8.已知橢圓x2+4y2=16,點M(2,1).
(1)求橢圓的焦距和離心率;
(2)若直線l過點M與橢圓交于A,B兩點,且點M是線段AB的中點,求直線l的方程.

分析 (1)橢圓x2+4y2=16,可化為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1,a=4,b=2,c=2$\sqrt{3}$,即可求橢圓的焦距和離心率;
(2)設(shè)A(x1,y1),B(x2,y2),由中點坐標(biāo)公式可得x1+x2=4,y1+y2=2,把A,B的坐標(biāo)代入橢圓方程,然后相減可求AB的斜率,進而可求直線AB的方程.

解答 解:(1)橢圓x2+4y2=16,可化為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1,∴a=4,b=2,c=2$\sqrt{3}$,
∴橢圓的焦距為4$\sqrt{3}$,離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
(2)設(shè)A(x1,y1),B(x2,y2),
由中點坐標(biāo)公式可得,x1+x2=4,y1+y2=2,
A,B代入x2+4y2=16,作差可得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
∴直線AB的斜率為-$\frac{1}{2}$
∴直線l的方程為y-1=-$\frac{1}{2}$(x-2),即x+2y-4=0.

點評 本題主要考查了直線與橢圓相交關(guān)系的應(yīng)用,要注意本題設(shè)點作差法的應(yīng)用,此類方法一般適合用于有中點坐標(biāo)求解直線的斜率問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(sinx-cosx,1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,x∈R.
(1)求函數(shù)f(x)圖象的對稱中心坐標(biāo);
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{8}$,$\frac{3π}{4}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{3}{2}$B.$\frac{{6+\sqrt{2}+\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{3+\sqrt{2}+\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知橢圓O:$\frac{{x}^{2}}{4}$+y2=1的右焦點為F,點B,C分別是橢圓O的上、下頂點,點P是直線l:y=-2上的一個動點(與y軸交點除外),直線PC交橢圓于另一點M.
(1)當(dāng)直線PM過橢圓的右焦點F時,求△FBM的面積;
(2)①記直線BM,BP的斜率分別為k1,k2,求證:k1•k2為定值;
②求$\overrightarrow{PB}$•$\overrightarrow{PM}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax,a∈R
(1)討論函數(shù)f(x)在(0,+∞)上的單凋性;
(2)設(shè)函數(shù)g(x)=$\frac{1}{3}$x3+(a-1)x-alnx,問:在定義域內(nèi)是否存在三個不同的自變量xi(i=1,2,3),使得f(xi)-g(xi)的值相等?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中在(-1,1)上是減函數(shù)的是( 。
A.y=$\frac{1}{2}$x2B.y=lnxC.y=$\frac{2}{x}$D.y=-$\frac{1}{3}$x3-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1繞其中心逆時針旋轉(zhuǎn)90°,所得曲線的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,其右準(zhǔn)線與x軸的交點為A,若在橢圓上存在點P滿足PF=AF,則$\frac{c^2}{a^2}$-2(lnc-lna)的范圍是(1,$\frac{1}{4}$+2ln2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=ax3+3x2+3x(a<0)在區(qū)間(1,2)是增函數(shù),則a的取值范圍是[-$\frac{5}{4}$,0).

查看答案和解析>>

同步練習(xí)冊答案