設(shè)函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,f(x)在x=x1時(shí)取得極大值,在x=x2時(shí)取得極小值,且x1∈(0,1),x2∈(1,2),則
b-2
a-1
的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求導(dǎo)數(shù),利用導(dǎo)函數(shù)f′(x)=x2+ax+b的圖象開(kāi)口朝上且x1∈(0,1),x2∈(1,2),得a,b的約束條件,據(jù)線性規(guī)劃求出最值.
解答: 解:∵函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,在x=x1處取得極大值,在x=x2處取得極小值,
∴x1,x2是導(dǎo)函數(shù)f′(x)=x2+ax+2b的兩根
由于導(dǎo)函數(shù)f′(x)=x2+ax+2b的圖象開(kāi)口朝上且x1∈(0,1),x2∈(1,2),
b>0
1+a+2b<0
4+2a+2b>0
滿足條件的約束條件的可行域如圖所示:
令Z=
b-2
a-1
,則其幾何意義是區(qū)域內(nèi)的點(diǎn)與P(1,2)連線的斜率,
∴由
b=0
1+a+2b=0
,可得a=-1,b=0,B(-1,0),kPB=
0-2
-1-1
=1
1+a+2b=0
4+2a+2b=0
,可得a=-3,b=1,可得A(-3,1),kPA=
1-2
-3-1
=
1
4

b-2
a-1
∈(
1
4
,1).
故答案為:(
1
4
,1).
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù),函數(shù)的極值以及不等式求解函數(shù)的最值,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e1-x(2ax-a2)(其中a≠0).
(Ⅰ)若函數(shù)f(x)在(2,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)f(x)的最大值為g(a),當(dāng)a>0時(shí),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=2x2+1分別滿足下列條件,請(qǐng)求出切點(diǎn)的坐標(biāo)
(1)切線的傾斜角為45°
(2)平行于直線4x-y-2=0
(3)垂直于直線x+8y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=
an
man+1
,且a1=4.
(1)當(dāng)m=1時(shí),證明{
1
an
}是等差數(shù)列;
(2)當(dāng)m=2n時(shí),求數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,記bn=
anan+1
,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)分別為a、b、c,且滿足b+c≤3a,則
c
a
的取值范圍是( 。
A、(1,+∞)
B、(0,2)
C、(1,3)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,a2=3,an+1=3an-2an-1(n∈N*,n≥2)
(Ⅰ)證明:數(shù)列{an+1-an}是等比數(shù)列,并求出{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=2log4(an+1)2,證明:對(duì)一切正整數(shù)n,有
1
b
2
1
-1
+
1
b
2
2
-1
+…+
1
b
2
n
-1
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
π
2
0
e2xcosxdx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
3
x3+bx2+cx,g(x)=mx2+
15
4
x
-9
(1)當(dāng)a=3,b=c=0時(shí),若存在過(guò)點(diǎn)(1,0)的直線與曲線y=f(x)和y=g(x)都相切,求實(shí)數(shù)m的值;
(2)當(dāng)b>a>0時(shí),函數(shù)y=f(x)在R上單調(diào)遞增,求
a+b+c
b-a
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
C
1
9
C
1
9
C
1
18
C
3
36
+
C
1
9
C
2
9
C
3
36

查看答案和解析>>

同步練習(xí)冊(cè)答案