5.某船在海面A處測(cè)得燈塔B在北偏東60°方向,與A相距6海里.船由A向正北方向航行8海里達(dá)到C處,這時(shí)燈塔B與船之間的距離為2$\sqrt{13}$.

分析 由題意畫出示意圖,利用余弦定理解三角形.

解答 解:由題意,示意圖為:已知AB=6,AC=8,∠A=60°,
由余弦定理得到BC2=AC2+AB2+2AC×ABcosA=36+64-2×6×8×$\frac{1}{2}$=52,
所以BC=$\sqrt{52}=2\sqrt{13}$.
所以燈塔B與船之間的距離為:2$\sqrt{13}$海里;
故答案為:2$\sqrt{13}$.

點(diǎn)評(píng) 本題考查了余弦定理的應(yīng)用;關(guān)鍵是正確建模,解三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若a=3cos30°,b=log${\;}_{\frac{1}{3}}$sin30°,c=log2tan30°,則( 。
A.a>b>cB.b<c<aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2sinθ.
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)若直線l與y軸的交點(diǎn)為P,直線l與曲線C的交點(diǎn)為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:sinθ=ρcos2θ,過(guò)點(diǎn)M(-1,2)的直線l:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C相交于A、B兩點(diǎn).求:
(1)線段AB的長(zhǎng)度;
(2)點(diǎn)M(-1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.三棱錐S-ABC中所有棱長(zhǎng)都相等且為a,求SA與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若復(fù)數(shù)z滿足2z+$\overline{z}$=3-2i,其中,i為虛數(shù)單位,則|z|=( 。
A.2B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在(x+2)4的展開式中,x2的系數(shù)為( 。
A.24B.12C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R,都有f(x+2)=f(x)+2,則f(1)=1;$\underset{\stackrel{20}{∑}}{k=1}$f(k)=210.(注:$\sum_{k=1}^{n}$ak=a1+a2+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖1,在平行四邊形ABCD中,AB=2AD,E,F(xiàn)分別為AB,CD的中點(diǎn),沿EF將四邊形AEFD折起到新位置變?yōu)樗倪呅蜛′EFD′,使A′B=A′F(如圖2所示).
(1)證明:A′E⊥BF;
(2)若∠BAD=60°,A′E=$\sqrt{2}$A'B=2,求二面角A′-EF-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案