A. | 2$\sqrt{3}$-1 | B. | 2$\sqrt{3}$+1 | C. | 4 | D. | $\sqrt{6}$+$\sqrt{2}$+1 |
分析 由題意結(jié)合數(shù)量積的幾何意義畫出圖形,數(shù)形結(jié)合求得|$\overrightarrow{m}$|的最大值.
解答 解:如圖,不妨設(shè)$\overrightarrow{a}$=(2,0),$\overrightarrow$=(1,$\sqrt{3}$),則$\overrightarrow{a}+\overrightarrow$=(3,$\sqrt{3}$),
滿足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow$|=1的|$\overrightarrow{m}$|的最大值是點P(3,$\sqrt{3}$)到原點的距離加1,
則|$\overrightarrow{m}$|的最大值為$\sqrt{{3}^{2}{+(\sqrt{3})}^{2}}$+1=2$\sqrt{3}$+1,
故選:B.
點評 本題考查平面向量的數(shù)量積運算,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{3}{2}$,2] | B. | [$\frac{\sqrt{5}}{2}$,2] | C. | [$\frac{3}{2}$,$\sqrt{5}$] | D. | [$\frac{\sqrt{5}}{2}$,$\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | |$\overrightarrow{a}$-$\overrightarrow$|=1 | B. | ($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$ | C. | ($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=$\frac{5}{2}$ | D. | ($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$=-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com