用適當(dāng)?shù)姆柋硎鞠铝屑螦,B之間的關(guān)系:A={x|x=2n,n∈N},B={x|x=4n,n∈Z}.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:由A表示非負(fù)偶數(shù),B表示4的整數(shù)倍,舉出例子,說明A,B之間不存在包含關(guān)系,可得A≠B
解答: 解:∵當(dāng)x=-4時(shí),x∈B,x∉A,
當(dāng)x=2時(shí),x∈A,x∉B
故A≠B
點(diǎn)評:本題考查的知識點(diǎn)是集合的包含關(guān)系判斷及應(yīng)用,其中正確理解集合A,B滿足的性質(zhì)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:mx2-4x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
lnx
x2
,g(x)=x2
(1)求f(x)的極大值;
(2)求證:12elnn!≤(n2+n)(2n+1)(n∈N*
(3)當(dāng)方程f(x)-
a
2e
=0(a∈R+)有唯一解時(shí),試探究函數(shù)F(x)=x(x2f′(x)+k)-a-
k
x
(k∈R)與g(x)的圖象在其公共點(diǎn)處是否存在公切線,若存在,研究k的值的個(gè)數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+b的圖象與x、y軸分別相交于點(diǎn)A、B,
AB
=2
i
+2
j
i
,
j
分別是與x、y軸正半軸同方向的單位向量),函數(shù)g(x)=x2-x-6.
(1)求k、b的值;
(2)若af(x)-g(x)≤1對于任意的x∈(-2,4)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計(jì)一個(gè)算法,計(jì)算一個(gè)學(xué)生語文﹑數(shù)學(xué)﹑英語的平均成績,并編寫相應(yīng)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過區(qū)域D
x≥0
y≥0
x+
2
y≤
2
的兩個(gè)頂點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若P是該橢圓上的一個(gè)動點(diǎn),F(xiàn)1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)設(shè)過定點(diǎn)M(0,2)且斜率為k的直線l與橢圓交于不同的兩點(diǎn)A、B,在y軸上是否存在定點(diǎn)E使
AE
BE
為定值?若存在,求出E點(diǎn)坐標(biāo)和這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=6+12x-x3的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
lnx+ax2,(a∈R)
(1)若曲線y=f(x)在點(diǎn)(
1
2
,f(
1
2
))處的切線與直線x+2y-2=0垂直,求a的值;
(2)若函數(shù)f(x)的極值點(diǎn)x0∈(1,2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式
3x-x2
>kx的解集為(0,3],則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案