【題目】已知函數(shù)a0.

1)求fx)的單調(diào)增區(qū)間;

2)當(dāng)x[0π]時(shí),fx)值域?yàn)?/span>[34],求a,b的值.

【答案】1[,]kZ;(2

【解析】

1)降次化簡,結(jié)合三角函數(shù)的圖象及性質(zhì)即可求出fx)的單調(diào)增區(qū)間;

2)當(dāng)x[0π]時(shí),求出fx)值域,即可得a,b的值.

1)函數(shù)a0

化簡可得:fx=asinx+acosx+b+a= a sinx++a+b.

,kZ.

可得:x.

fx)的單調(diào)增區(qū)間為[],kZ.

2)當(dāng)x[0π]時(shí),

可得:[,].

∴當(dāng)x+時(shí),函數(shù)fx)取得最大值為.

∴當(dāng)x+時(shí),函數(shù)fx)取得最小值為.

由題意,可得:

解得:.

故得當(dāng)x[0,π]時(shí),fx)值域?yàn)?/span>[34],此時(shí)a的值為,b的值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為橢圓的左、右頂點(diǎn),直線過橢圓C的右焦點(diǎn)F且交橢圓于P,Q兩點(diǎn).連結(jié)并延長交直線于點(diǎn)M.

1)若直線的斜率為,求直線的方程;

2)求證:AQ,M三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為兩個(gè)隨機(jī)事件,給出以下命題:(1)若為互斥事件,且,,則;(2)若,,則為相互獨(dú)立事件;(3)若,,則為相互獨(dú)立事件;(4)若,,則為相互獨(dú)立事件;(5)若,,,則為相互獨(dú)立事件;其中正確命題的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過焦點(diǎn)的直線與拋物線交于,兩點(diǎn),與橢圓交于兩點(diǎn),滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)AB兩點(diǎn)的坐標(biāo)分別為(﹣1,0),(1,0.條件甲:A、B、C三點(diǎn)構(gòu)成以∠C為鈍角的三角形;條件乙:點(diǎn)C的坐標(biāo)是方程x2+2y2=1y≠0)的解,則甲是乙的( 。

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即1224,48,192,,逐個(gè)算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時(shí)候的近似值是3.141024,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對(duì)后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某中學(xué)學(xué)生對(duì)《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對(duì)的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,六組,得到如下頻率分布直方圖.

1)若答對(duì)一題得10分,未答對(duì)不得分,估計(jì)這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從答對(duì)題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對(duì)題數(shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C過點(diǎn)FC的右焦點(diǎn),⊙F的方程為

1)求C的方程;

2)若直線與⊙O相切,與⊙F交于MN兩點(diǎn),與C交于P、Q兩點(diǎn),其中M、P在第一象限,記⊙O的面積為,求取最大值時(shí),直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓與直線相切于點(diǎn),與正半軸交于點(diǎn),與直線在第一象限的交點(diǎn)為.點(diǎn)為圓上任一點(diǎn),且滿足,以為坐標(biāo)的動(dòng)點(diǎn)的軌跡記為曲線

1)求圓的方程及曲線的方程;

2)若兩條直線分別交曲線于點(diǎn),求四邊形面積的最大值,并求此時(shí)的的值.

3)根據(jù)曲線的方程,研究曲線的對(duì)稱性,并證明曲線為橢圓.

查看答案和解析>>

同步練習(xí)冊答案