分析 (I)化簡(jiǎn)可得{an+1}是以2為首項(xiàng),3為公比的等比數(shù)列,從而求得an=2•3n-1-1;
(Ⅱ)化簡(jiǎn)bn=(2n+1)2•3n-1,從而利用錯(cuò)位相減法求其前n項(xiàng)和即可.
解答 解:(I)∵an+1=3an+2,
∴an+1+1=3(an+1),又∵a1+1=2,
∴{an+1}是以2為首項(xiàng),3為公比的等比數(shù)列,
故an+1=2•3n-1,
故an=2•3n-1-1;
(Ⅱ)bn=(2n+1)(an+1)=(2n+1)2•3n-1,
故Tn=2×3×1+2×5×3+2×7×32+…+(2n+1)2×3n-1,
3Tn=2×3×3+2×5×32+2×7×33+…+(2n+1)2×3n,
兩式作差可得,
2Tn=-6-2×2×3-2×2×32-2×2×33-…-2×2×3n-1+(2n+1)×2×3n,
故Tn=-3-2×3-2×32-2×33-…-2×3n-1+(2n+1)×3n
=-3-2$\frac{3(1-{3}^{n-1})}{1-3}$+(2n+1)×3n
=2n3n.
點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式的求法及構(gòu)造法的應(yīng)用,同時(shí)考查了錯(cuò)位相減法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com