【題目】2018年元旦假期,高三的8名同學準備拼車去旅游,其中班、班,班、班每班各兩名,分乘甲乙兩輛汽車,每車限坐4名同學乘同一輛車的4名同學不考慮位置,其中班兩位同學是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學中恰有2名同學是來自同一個班的乘坐方式共有  

A. 18 B. 24 C. 48 D. 36

【答案】B

【解析】

分類討論,第一類,一班的名同學在甲車上;第二類,一班的名同學不在甲車上,再利用組合知識,問題得以解決。

由題意,第一類,一班的名同學在甲車上,甲車上剩下兩個要來自不同的班級,從三個班級中選兩個為種,然后分別從選擇的班級中再選擇一個學生為,故有種;

第二類,一班的名同學不在甲車上,則從剩下的個班級中選擇一個班級的兩名同學在甲車上,為,然后再從剩下的兩個班級中分別選擇一人為,這時共有種,

根據(jù)分類計數(shù)原理得,共有種不同的乘車方式

故選

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,且,其中,分別是,,的中點,動點在線段上運動時,下列四個結論:①;;,

其中恒成立的為(

A. ①③ B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)fx=ax+ka-x,(a0a≠1,kR).

1)求實數(shù)k的值;

2)是否存在實數(shù)a,使函數(shù)y=fx+2ax[-1,1]上的最大值為7?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x|x-a|+bx

1)若a=2,且fx)是R上的增函數(shù),求實數(shù)b的取值范圍;

2)當b=0時,若關于x的方程fx=x+1有三個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為(萬元),它們與投入資金(萬元)的關系有經(jīng)驗公式,.今將120萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額都不低于20萬元.

(Ⅰ)設對乙產(chǎn)品投入資金萬元,求總利潤(萬元)關于的函數(shù)關系式及其定義域;

(Ⅱ)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)

(1)若函數(shù)為奇函數(shù),求m的值;

(2)若函數(shù)上是增函數(shù),求實數(shù)m的取值范圍;

(3)若函數(shù)上的最小值為,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國海軍,正在以不可阻擋的氣魄向深藍進軍。在中國海軍加快建設的大背景下,國產(chǎn)水面艦艇噸位不斷增大、技術日益現(xiàn)代化,特別是國產(chǎn)航空母艦下水,航母需要大量高素質航母艦載機飛行員。為此中國海軍在全國9省9所優(yōu)質普通高中進行海航班建設試點培育航母艦載機飛行員。2017年4月我省首屆海軍航空實驗班開始面向全省遴選學員,有10000名初中畢業(yè)生踴躍報名投身國防,經(jīng)過文化考試、體格測試、政治考核、心理選拔等過程篩選,最終招收50名學員。培養(yǎng)學校在關注學員的文化素養(yǎng)同時注重學員的身體素質,要求每月至少參加一次野營拉練活動(下面簡稱“活動”)并記錄成績.10月某次活動中海航班學員成績統(tǒng)計如圖所示:

(Ⅰ)根據(jù)圖表,試估算學員在活動中取得成績的中位數(shù)(精確到);

(Ⅱ)根據(jù)成績從、兩組學員中任意選出兩人為一組,若選出成績分差大于,則稱該組為“幫扶組”,試求選出兩人為“幫扶組”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)的定義域為R,如果存在函數(shù)gx),使得fxgx)對于一切實數(shù)x都成立,那么稱gx)為函數(shù)fx)的一個承托函數(shù).已知函數(shù)fx=ax2+bx+c的圖象經(jīng)過點(-1,0).

1)若a=1,b=2.寫出函數(shù)fx)的一個承托函數(shù)(結論不要求證明);

2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)fx)的一個承托函數(shù),且fx)為函數(shù)的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,在橢圓上(異于橢圓的左、右頂點),過右焦點的外角平分線的垂線,交于點,且(為坐標原點),橢圓的四個頂點圍成的平行四邊形的面積為

(1)求橢圓的方程;

(2)若直線()與橢圓交于,兩點,點關于軸的對稱點為,直線軸于,求當三角形的面積最大時,直線的方程.

查看答案和解析>>

同步練習冊答案