4.設(shè)向量$\overrightarrow{AB}$=(1,m),$\overrightarrow{BC}$=(2m,-1),其中m∈[-1,+∞),則$\overrightarrow{AB}$•$\overrightarrow{AC}$的最小值為$\frac{3}{4}$.

分析 求出$\overrightarrow{AC}$的坐標(biāo),代入向量的數(shù)量積公式得出$\overrightarrow{AB}•\overrightarrow{AC}$關(guān)于m的函數(shù),根據(jù)二次函數(shù)的性質(zhì)得出$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

解答 解:$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$=(2m+1,m-1).
∴$\overrightarrow{AB}•\overrightarrow{AC}$=2m+1+m(m-1)=m2+m+1=(m+$\frac{1}{2}$)2+$\frac{3}{4}$.
∵m∈[-1,+∞),
∴當(dāng)m=-$\frac{1}{2}$時(shí),$\overrightarrow{AB}•\overrightarrow{AC}$取得最小值$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算,數(shù)量積運(yùn)算,二次函數(shù)的最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,點(diǎn)(1,-$\sqrt{3}$)在雙曲線的一條直線上,則雙曲線的方程為(  )
A.y2-$\frac{{x}^{2}}{3}$=1B.$\frac{{y}^{2}}{3}$-x2=1C.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1D.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的和是Sn,且任意n∈N+,都有$2{S_n}=a_n^2+{a_n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某農(nóng)機(jī)租賃公司共有50臺(tái)收割機(jī),其中甲型20臺(tái),乙型30臺(tái),現(xiàn)將這50臺(tái)聯(lián)合收割機(jī)派往 A,B兩地區(qū)收割水稻,其中30臺(tái)派往 A地區(qū),20臺(tái)派往 B地區(qū),兩地區(qū)與該農(nóng)機(jī)公司商定的每天租賃價(jià)格如表:
每臺(tái)甲型收割機(jī)的租金每臺(tái)乙型收割機(jī)的租金
A地區(qū)1800元1600元
B地區(qū)1600元1200元
(1)設(shè)派往 A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y元,求y關(guān)于x的函數(shù)關(guān)系式;
(2)若使農(nóng)機(jī)租賃公司這50臺(tái)收割機(jī)一天所獲租金不低于79600元,試寫(xiě)出滿足條件的所有分派方案;
(3)農(nóng)機(jī)租賃公司擬出一個(gè)分派方案,使該公司50臺(tái)收割機(jī)每天獲得租金最高,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線方程為y=2x,則C的離心率是(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.2D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知角α的終邊落在直線y=-2x上,則tanα=-2,$cos(2α+\frac{3}{2}π)$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)單位向量$\overrightarrow{e_1}$與$\overrightarrow{e_2}$既不平行也不垂直,對(duì)非零向量$\overrightarrow a={x_1}\overrightarrow{e_1}+{y_1}\overrightarrow{e_2}$、$\overrightarrow b={x_2}\overrightarrow{e_1}+{y_2}\overrightarrow{e_2}$有結(jié)論:
①若x1y2-x2y1=0,則$\overrightarrow a∥\overrightarrow b$;
②若x1x2+y1y2=0,則$\overrightarrow a⊥\overrightarrow b$.
關(guān)于以上兩個(gè)結(jié)論,正確的判斷是( 。
A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)a=${∫}_{0}^{π}$$\sqrt{2}$cos(x-$\frac{π}{4}$)dx,則二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)4中展開(kāi)式中含x項(xiàng)的系數(shù)是( 。
A.-32B.32C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.化簡(jiǎn)$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的結(jié)果是1-$\frac{1}{2}$sin2θ.

查看答案和解析>>

同步練習(xí)冊(cè)答案