分析 設(shè)AB=c,AC=b,BC=a,利用中線長(zhǎng)定理可得:${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,由于3c=2b.可得$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{^{2}}{18}}{{a}^{2}+\frac{7}{9}^{2}}$=$\frac{135}{126+98(\frac{a})^{2}}$-$\frac{1}{14}$,利用三角形三邊大小關(guān)系可得:a<b+c,且a+c>b,即可得出.
解答 解:設(shè)AB=c,AC=b,BC=a,
∵E、F分別是AC,AB的中點(diǎn),
∴${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,
∵3AB=2AC,即3c=2b.
∴2BE2=${a}^{2}-\frac{^{2}}{18}$,
2CF2=a2+$\frac{7}{9}^{2}$.
∴$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{^{2}}{18}}{{a}^{2}+\frac{7}{9}^{2}}$=$\frac{18-(\frac{a})^{2}}{18+14(\frac{a})^{2}}$=$\frac{135}{126+98(\frac{a})^{2}}$-$\frac{1}{14}$,
∵a<b+c,且a+c>b,
∴$\frac{a}$>$\frac{3}{5}$,且$\frac{a}$<3.
∴$\frac{9}{25}$<$(\frac{a})^{2}$<9.
∴$\frac{B{E}^{2}}{C{F}^{2}}$∈$(\frac{1}{16},\frac{49}{64})$.
∴$\frac{BE}{CF}$∈$(\frac{1}{4},\frac{7}{8})$.
故答案為:$(\frac{1}{4},\frac{7}{8})$.
點(diǎn)評(píng) 本題考查了余弦定理、中線長(zhǎng)定理、三角形三邊大小關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | 3 | C. | $\frac{8}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若方程②③都有實(shí)根則方程①無實(shí)根 | |
B. | 若方程②③都有實(shí)根則方程①有實(shí)根 | |
C. | 若方程②無實(shí)根但方程③有實(shí)根時(shí),則方程①無實(shí)根 | |
D. | 若方程②無實(shí)根但方程③有實(shí)根時(shí),則方程①有實(shí)根 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com