16.在△ABC中,E、F分別是AC,AB的中點(diǎn),且3AB=2AC,則$\frac{BE}{CF}$的取值范圍為$(\frac{1}{4},\frac{7}{8})$.

分析 設(shè)AB=c,AC=b,BC=a,利用中線長(zhǎng)定理可得:${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,由于3c=2b.可得$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{^{2}}{18}}{{a}^{2}+\frac{7}{9}^{2}}$=$\frac{135}{126+98(\frac{a})^{2}}$-$\frac{1}{14}$,利用三角形三邊大小關(guān)系可得:a<b+c,且a+c>b,即可得出.

解答 解:設(shè)AB=c,AC=b,BC=a,
∵E、F分別是AC,AB的中點(diǎn),
∴${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,
∵3AB=2AC,即3c=2b.
∴2BE2=${a}^{2}-\frac{^{2}}{18}$,
2CF2=a2+$\frac{7}{9}^{2}$.
∴$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{^{2}}{18}}{{a}^{2}+\frac{7}{9}^{2}}$=$\frac{18-(\frac{a})^{2}}{18+14(\frac{a})^{2}}$=$\frac{135}{126+98(\frac{a})^{2}}$-$\frac{1}{14}$,
∵a<b+c,且a+c>b,
∴$\frac{a}$>$\frac{3}{5}$,且$\frac{a}$<3.
∴$\frac{9}{25}$<$(\frac{a})^{2}$<9.
∴$\frac{B{E}^{2}}{C{F}^{2}}$∈$(\frac{1}{16},\frac{49}{64})$.
∴$\frac{BE}{CF}$∈$(\frac{1}{4},\frac{7}{8})$.
故答案為:$(\frac{1}{4},\frac{7}{8})$.

點(diǎn)評(píng) 本題考查了余弦定理、中線長(zhǎng)定理、三角形三邊大小關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC的內(nèi)角A、B、C所對(duì)應(yīng)邊的長(zhǎng)度分別為a、b、c,若$|{\begin{array}{l}a&c\\ c&a\end{array}}|=|{\begin{array}{l}{-b}&{-a}\\ b&b\end{array}}|$,則角C的大小是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知c=2,sinA=$\sqrt{3}$sinB,則△ABC面積的最大值為(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,點(diǎn)D在BC邊所在直線上,若$\overrightarrow{CD}$=4$\overrightarrow{BD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則2m+n的值等于(  )
A.$\frac{4}{3}$B.3C.$\frac{8}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知首項(xiàng)都是1的數(shù)列{an},{bn}(bn≠0,n∈N*)滿足$\frac{_{n+1}}{_{n}}$=$\frac{{a}_{n+1}}{{a}_{n}-2_{n}}$.
(1)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的通項(xiàng)公式;
(2)若{bn}是由正數(shù)組成的等比數(shù)列,且6bn+2+bn+1=bn,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,若a4,a8是方程3x2-11x+9=0的兩根,則a6的值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在等差數(shù)列{an}中,
(1)已知a2+a7+a8+a13=6,求a6+a9
(2)已知S11=66,求a6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是奇函數(shù),當(dāng)x<0,f(x)=-x2+x,若不等式f(x)-x≤2logax(a>0且a≠1)對(duì)?x∈(0,$\frac{\sqrt{2}}{2}$]恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{4}$]B.[$\frac{1}{4}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.記方程①x2+a1x+1=0,②x2+a2x+1=0,③x2+a3x+1=0,其中a1,a2,a3是正實(shí)數(shù),當(dāng)a1,a2,a3成等比數(shù)列,下列選項(xiàng)中,正確的是(  )
A.若方程②③都有實(shí)根則方程①無實(shí)根
B.若方程②③都有實(shí)根則方程①有實(shí)根
C.若方程②無實(shí)根但方程③有實(shí)根時(shí),則方程①無實(shí)根
D.若方程②無實(shí)根但方程③有實(shí)根時(shí),則方程①有實(shí)根

查看答案和解析>>

同步練習(xí)冊(cè)答案