分析 建立坐標(biāo)系,將正三角形放入坐標(biāo)系中,利用坐標(biāo)法結(jié)合向量數(shù)量積的坐標(biāo)公式進(jìn)行求解即可.
解答 解:當(dāng)三角形放入坐標(biāo)系中,
則B(-1,0),C(1,0),D(0,0),A(0,$\sqrt{3}$),
設(shè)$\overrightarrow{AE}$=x$\overrightarrow{AC}$=x(-1,$\sqrt{3}$),0≤x≤1,
則$\overrightarrow{AD}$•$\overrightarrow{BE}$=$\overrightarrow{AD}$•($\overrightarrow{BA}$+$\overrightarrow{AE}$)
=(0,-$\sqrt{3}$)•(1-x,$\sqrt{3}$+x$\sqrt{3}$)
=-3(x+1),
∵0≤x≤1,
∴1≤x+1≤2,
則-6≤-3(x+1)≤-3,
則$\overrightarrow{AD}$•$\overrightarrow{BE}$的最小值是-6,
故答案為:-6.
點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)條件建立坐標(biāo)系,利用坐標(biāo)法是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+3)2+y2=4 | B. | (x-3)2+y2=4 | C. | (2x-3)2+4y2=1 | D. | (2x+3)2+4y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{3}$ | C. | x=-$\frac{5π}{12}$ | D. | x=$\frac{π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,-2) | B. | (1,-2) | C. | (1,-3) | D. | (7,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com