已知角A,B,C是三角形ABC的三個內(nèi)角,且tanA=7,tanB=
4
3

(Ⅰ)求tan(A+B)的值;
(Ⅱ)求角C的大小.
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:(Ⅰ)tanA=7,tanB=
4
3
,利用兩角和的正切公式即可求得tan(A+B)的值;
(Ⅱ)在三角形中,tanC=-tan(A+B)=1,從而可得角C的大。
解答: 解:(Ⅰ) 因為角A,B,C是三角形ABC的三個內(nèi)角,且tanA=7,tanB=
4
3
,
所以tan(A+B)=
tanA+tanB
1-tanAtanB
=
7+
4
3
1-7×
4
3
=-1
,…(6分)
(Ⅱ)在三角形中,tanC=-tan(A+B)=1…(8分)
0<C<π,
所以C=
π
4
…(10分)
點評:本題考查兩角和與差的正切函數(shù),求得tan(A+B)=-1是關鍵,考查運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為
1
2
,乙每次擊中目標的概率為
2
3
.記甲擊中目標的次數(shù)為X,乙擊中目標的次數(shù)為Y.
(1)求X的分布列;
(2)求X和Y的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,x,y},B{1,2x,x2},是否存在實數(shù)x和y,使得A=B.若存在,求出x與y的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的方程:x2+y2-2x+4y+k=0
(1)若方程表示圓,求k的取值范圍;
(2)當k=-4時,是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過原點.若存在,求出直線m的方程; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且a2=5,S9=99.
(1)求an及Sn;
(2)若數(shù)列{bn}滿足bn=
4
an2-1
,n∈N*,證明數(shù)列{bn}的前n項和Tn滿足Tn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=log2(m2-2m-2)+(m2+2m-15)i,(m∈R),試求當m為何值時,
(1)復數(shù)z為純虛數(shù);
(2)復數(shù)z對應的點Z在第三象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-2sin2
x
2

(Ⅰ)在區(qū)間[
π
2
,
π
2
]上任取x0,求滿足f(x0)≥
1
2
的概率;
(Ⅱ)若f(α)=
2
2
3
,α為第四象限角,求
sin(π-2α)+cos(π+α)
tanα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點A(-1,2),B(m,3).
(1)求直線AB的方程;
(2)已知實數(shù)m∈[-
3
3
-1,
3
-1],求直線AB的傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},若B∪A≠A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案