12.正三角形ABC的邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為$\sqrt{2}$,此時(shí)四面體ABCD外接球表面積為5π.

分析 三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出正三棱柱的底面中心連線(xiàn)的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,然后求球的表面積.

解答 解:根據(jù)題意可知三棱錐B-ACD的三條側(cè)棱BD⊥AD、DC⊥DA,底面是等腰直角三角形,它的外接球就是它擴(kuò)展為三棱柱的外接球,求出三棱柱的底面中心連線(xiàn)的中點(diǎn)到頂點(diǎn)的距離,就是球的半徑,
三棱柱ABC-A1B1C1的中,底面邊長(zhǎng)為1,1,$\sqrt{2}$,
由題意可得:三棱柱上下底面中點(diǎn)連線(xiàn)的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說(shuō)明中心就是外接球的球心,
∴三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,
球心到底面的距離為1,
底面中心到底面三角形的頂點(diǎn)的距離為:$\frac{\sqrt{2}}{2}$,
∴球的半徑為r=$\sqrt{(\frac{\sqrt{3}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{5}}{2}$.
外接球的表面積為:4πr2=5π.
故答案為:5π.

點(diǎn)評(píng) 本題考查空間想象能力,計(jì)算能力;三棱柱上下底面中點(diǎn)連線(xiàn)的中點(diǎn),到三棱柱頂點(diǎn)的距離相等,說(shuō)明中心就是外接球的球心,是本題解題的關(guān)鍵,仔細(xì)觀(guān)察和分析題意,是解好數(shù)學(xué)題目的前提.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2-2bx+3,A={1,2,3,4},B={-2,-1,1,2,3},分別從集合A,B中隨機(jī)取一個(gè)數(shù)作為a和b.
(1)求方程f(x)=0有兩個(gè)不等的實(shí)數(shù)根的概率;
(2)求函數(shù)y=f(x)在(1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)數(shù)列{an}滿(mǎn)足a1=2,an+1=$\frac{{a}_{n}}{{a}_{n}+3}$(n∈N*),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}\right.$,則$\frac{x}{y}$的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線(xiàn)C.
(I)求C的方程.
(Ⅱ)若直線(xiàn)y=k(x-1)與曲線(xiàn)C交于R,S兩點(diǎn),問(wèn)是否在x軸上存在一點(diǎn)T,使得當(dāng)k變動(dòng)時(shí)總有∠OTS=∠OTR?若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知圓心在原點(diǎn),半徑為R的圓與△ABC的邊有公共點(diǎn),其中A(2,-2),B(2,1),C($\frac{1}{2}$,1),則R的最小值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在直三棱柱A1B1C1-ABC中,AB=AC=4$\sqrt{2}$,AA1=6,BC=8,則其外接球半徑為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)點(diǎn)M(x0,1),若在圓O:x2+y2=1上存在兩個(gè)不同的點(diǎn)Ni(i=1,2),使得∠OMNi=45°,且三點(diǎn)M,N1,N2在同一直線(xiàn)上,則x0的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.平面外ABC的一點(diǎn)P,AP、AB、AC兩兩互相垂直,過(guò)AC的中點(diǎn)D做ED⊥面ABC,且ED=1,PA=2,AC=2,連接BP,BE,多面體B-PADE的體積是$\frac{\sqrt{3}}{3}$;
(1)畫(huà)出面PBE與面ABC的交線(xiàn),說(shuō)明理由;
(2)求BE與面PADE所成的線(xiàn)面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案