分析 (1)L的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得普通方程.C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1可得普通方程.
(2)把直線L的參數(shù)方程代入圓的普通方程可得:t2+$(\sqrt{3}-1)$t-2=0,利用根與系數(shù)的關系可得|PA||PB|=|t1t2|.
解答 解:(1)L的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t可得:$\sqrt{3}$x-y+1=0.
C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),利用cos2θ+sin2θ=1可得:(x-1)2+y2=4.
(2)把直線L的參數(shù)方程代入圓的普通方程可得:
t2+$(\sqrt{3}-1)$t-2=0,∴t1t2=-2,
∴|PA||PB|=|t1t2|=2.
點評 本題考查了參數(shù)的幾何意義及其意義、參數(shù)方程化為普通方程,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
運動時間 性別 | 運動達人 | 非運動達人 | 合計 |
男 | 36 | ||
女 | 26 | ||
合計 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 55 | B. | $\frac{55}{2}$ | C. | 165 | D. | $\frac{165}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 21 | B. | 22 | C. | 23 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,$\frac{π}{3}$) | B. | (2,$\frac{π}{2}$) | C. | (2,$\frac{4π}{3}$) | D. | (2,$\frac{7π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com