9.已知等差數(shù)列{an}的前n項和記為Sn,若a4+a6+a8=15,則S11的值為( 。
A.55B.$\frac{55}{2}$C.165D.$\frac{165}{2}$

分析 由數(shù)列{an}為等差數(shù)列,把已知等式左邊的第一項和第三項結(jié)合,利用等差數(shù)列的性質(zhì)化簡,得到關(guān)于a6的方程,求出方程的解得到a6的值,然后利用等差數(shù)列的求和公式表示出S11,并利用等差數(shù)列的性質(zhì)化簡后,將a6的值代入即可求出值.

解答 解:∵等差數(shù)列{an},
∴a4+a8=2a6,又a4+a6+a8=15,
∴3a6=15,即a6=5,
又a1+a11=2a6,
則S11=11a6=55.
故選:A.

點評 此題考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的求和公式,熟練掌握性質(zhì)及公式是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)y=-$\frac{1}{3}$cos(2x-$\frac{π}{4}}$)的單調(diào)增區(qū)間是[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$),其中x∈R,下列結(jié)論中正確的是( 。
A.f(x)是最小正周期為π的偶函數(shù)
B.f(x)的一條對稱軸是 $x=\frac{π}{3}$
C.f(x)的最大值為2
D.將函數(shù)$y=\sqrt{3}sin2x$的圖象向左平移$\frac{π}{6}$個單位得到函數(shù)f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.sin315°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.曲線f(x)=$\frac{1}{2}$x2+lnx的切線的斜率的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且sinα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{3}}{2}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在直角坐標系xOy中,L的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求L和C的普通方程;
(2)已知P(0,1),L與C交于A、B兩點,求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{1}{2}{x^2}$-2lnx的單調(diào)遞減區(qū)間是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.雙曲線$\frac{x^2}{3}$-y2=1的兩條漸近線的方程為$x±\sqrt{3}y=0$.

查看答案和解析>>

同步練習冊答案