6.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第( 。╉(xiàng).
A.21B.22C.23D.24

分析 通過(guò)數(shù)列的每一項(xiàng),得到數(shù)列的取值規(guī)律,得到數(shù)列的通項(xiàng)公式即可.

解答 解:2,5,8,11…是公差為3的等差數(shù)列通項(xiàng)公式為:2+3(n-1)=3n-1,
數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…即$\sqrt{2}$,$\sqrt{5}$,$\sqrt{8}$,$\sqrt{11}$,…的通項(xiàng)公式為an=$\sqrt{3n-1}$,
∴$\sqrt{3n-1}$=$2\sqrt{17}$,
解得n=23,
故選:C

點(diǎn)評(píng) 本題主要考查數(shù)列的概念及簡(jiǎn)單的表示,利用數(shù)列項(xiàng)的規(guī)律得到通項(xiàng)公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A(4,0),B(2,2)為橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),則|MA|+|MB|的最小值是( 。
A.10+2$\sqrt{10}$B.10+$\sqrt{10}$C.10-2$\sqrt{10}$D.10-$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.sin315°的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且sinα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{3}}{2}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,L的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求L和C的普通方程;
(2)已知P(0,1),L與C交于A、B兩點(diǎn),求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.我國(guó)古代有一個(gè)“百錢買百雞”問(wèn)題:用100元買100只雞,其中公雞每只5元,母雞每只3元,小雞3只一元,問(wèn)能買多少只公雞?多少只母雞?多少只小雞?現(xiàn)在,設(shè)公雞、母雞的單價(jià)不變,小雞每只0.5元,請(qǐng)你輸入錢數(shù)和雞的總數(shù).計(jì)算出買公雞、母雞、小雞各多少只.
要求:(1)畫出程序框圖,或者用你熟悉的一種程序語(yǔ)言編寫程序;
(2)如果有自然數(shù)解,請(qǐng)輸出所有可能的結(jié)果:如果沒(méi)有自然數(shù)解,請(qǐng)輸出提示信息.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\frac{1}{2}{x^2}$-2lnx的單調(diào)遞減區(qū)間是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)a為實(shí)數(shù),f(x)=lnx-ax
(I)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(II)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(2-ax)在[0,3]上的增函數(shù),則a的取值范圍是(0,$\frac{2}{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案