4.已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x,(x∈R)則函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈z.

分析 利用三角函數(shù)的恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)增區(qū)間.

解答 解:函數(shù)f(x)=sin2x+2sinxcosx+3cos2x=2+cos2x+sin2x=2+$\sqrt{2}$sin(2x+$\frac{π}{4}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈z.
故函數(shù)的增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈z,
故答案為:[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈z.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,正弦函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)(1-2x)3=a3x3+a2x2+a1x+a0,則a0-a1+a2-a3=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an},$\overrightarrow{x}$=(an+1,-2),$\overrightarrow{y}$=(1,an),且$\overrightarrow{x}$⊥$\overrightarrow{y}$,a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若滿足bn=13+2log${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x、y滿足約束條件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,則z=2x+4y的最小值是-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程
(2)若直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1,求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.方程log2x+x=2的解所在的區(qū)間為( 。
A.(0.5,1)B.(1,1.5)C.(1.5,2)D.(2,2.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式組$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥1\\ x≤1\end{array}\right.$表示的平面區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的k值為5,則輸入的整數(shù)p的最大值為( 。
A.7B.31C.15D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.圓C1:(x+2)2+(y-m)2=9與圓C2:(x-m)2+(y+1)2=4相切,則m的值為①當(dāng)兩圓相內(nèi)切時(shí),m=-2或-1
②當(dāng)兩圓相外切時(shí),m=2或-5.

查看答案和解析>>

同步練習(xí)冊(cè)答案