11.已知直線l過點P(1,1),且與曲線y=x3在點P處的切線互相垂直,則直線l的方程為( 。
A.x+3y+4=0B.x+3y-4=0C.3x-y+2=0D.3x-y-2=0

分析 由導(dǎo)數(shù)的幾何意義可求曲線y=x3在(1,1)處的切線斜率k,然后根據(jù)直線垂直的條件可求直線方程.

解答 解:設(shè)曲線y=x3在點P(1,1)處的切線斜率為k,則k=f′(1)=3
因為直線l過點P(1,1),與曲線y=x3在點P(1,1)處的切線互相垂直
所以y-1=-$\frac{1}{3}$(x-1),解得x+3y-4=0
故選:B.

點評 本題主要考查了導(dǎo)數(shù)的幾何意義:曲線在點(x0,y0)處的切線斜率即為該點處的導(dǎo)數(shù)值,兩直線垂直的條件的運用.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某房產(chǎn)公司現(xiàn)有出租房20套,若每月租金為1000元,可全部租出,每月租金每增加100元,則租不出去的房間將多一套.而且每月各項固定支出共8100元,設(shè)月租金是100元的整數(shù)倍,每月租出x套,月收益為y元,且月收益=月租金-每月各項固定支出.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式.
(2)每月租出多少套房間,所得收益將達(dá)到最大值,最大收益是多少元?
(3)當(dāng)每月出租房間為多少套時.所得收益為0元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某校從高一年級隨機抽取了20名學(xué)生第一學(xué)期的數(shù)學(xué)學(xué)期綜合成績和物理學(xué)期綜合成績列表如下
 學(xué)生序號 1 2 3 4 5 6 7 8 910 
 數(shù)學(xué)學(xué)期綜合成績 96 92 91 91 81 76 82 79 90 93
 物理學(xué)期綜合成績 91 91 90 92 90 78 91 71 78 84
 
學(xué)生序號
 11 12 13 14 15 16 17 18 19 20
 數(shù)學(xué)學(xué)期綜合成績 68 72 79 70 64 61 63 66 53 59
 物理學(xué)期綜合成績 79 78 62 72 62 60 68 72 56 54
規(guī)定:綜合成績不低于90分者為優(yōu)秀,低于90分為不優(yōu)秀
(1)在序號1,2,3,4,5,6這6個學(xué)生中隨機選兩名,求這兩名學(xué)生數(shù)學(xué)和物理都優(yōu)秀的概率
(2)根據(jù)這次抽查數(shù)據(jù),列出2×2列聯(lián)表,能否在犯錯誤的概率不超過0.025的前提下認(rèn)為物理成績與數(shù)學(xué)成績有關(guān)?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 p(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O為坐標(biāo)原點,F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM與y軸交點為N,且$\overrightarrow{EO}=3\overrightarrow{NO}$,則C的離心率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將編號為1,2,3,4的四個檔案袋放入3個不同檔案盒中,每個檔案盒不空且恰好有1個檔案盒放有2個連號檔案袋的所有不同放法種數(shù)有( 。
A.6B.18C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z滿足$\frac{z}{1+i}=zi+1$,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.$\frac{3}{5}+\frac{1}{5}i$B.$\frac{3}{5}-\frac{1}{5}i$C.$\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=$\frac{i-3}{1+i}$的實部為(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.cos$\frac{25π}{6}$=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}的前n項和為Sn,若點(n,Sn)(n∈N*)在函數(shù)f(x)=3x2-2x的圖象上,則{an}的通項公式是an=6n-5.

查看答案和解析>>

同步練習(xí)冊答案