10.過橢圓$\frac{{x}^{2}}{2}$+y2=1的左焦點F作斜率為k(k≠0)的直線交橢圓于A,B兩點,使得AB的中點M在直線x+2y=0上,則k的值為(  )
A.1B.2C.-1D.-2

分析 由橢圓方程,a,b,c.直線AB方程為y=k(x+1),代入橢圓方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用中點坐標公式即可求得k值,從而解決問題.

解答 解:由橢圓方程,a=$\sqrt{2}$,b=1,c=1,則點F為(-1,0).
直線AB方程為y=k(x+1),代入橢圓方程,得
(2k2+1)x2+4k2x+2k2-2=0.
設(shè)A(x1,y1),B(x2,y2),M(x0,y0),則
x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2{k}^{2}}{2{k}^{2}+1}$,y0=k(x0+1)=$\frac{k}{2{k}^{2}+1}$,
由點M在直線x+2y=0上,知-2k2+2k=0,
∵k≠0,
∴k=1.
故選:A.

點評 本小題主要考查橢圓的簡單性質(zhì),直線與橢圓方程的綜合應(yīng)用,考查運算求解能力,考查方程思想.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.tan70°+tan65°-tan70°tan65°=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)對定義域內(nèi)任意x滿足f(2+x)=f(-x),數(shù)列{an}是公比不為1的正項等比數(shù)列,且f(lga5)=f(lga15),則a10=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若sinα-sinβ=$\frac{\sqrt{3}}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(理)已知等差數(shù)列{an}的首項為p,公差為d(d>0),對于不同的自然數(shù)n(n∈N*),直線x=an與x軸和指數(shù)函數(shù)f(x)=($\frac{1}{2}$)x的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證:數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系XOY中,以原點O為極點,X軸的正半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為ρ=1,曲線C2參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{5}cosθ}\\{y=2+\sqrt{5}sinθ}\end{array}\right.$(θ是參數(shù)).
(1)求曲線C1和C2的直角坐標系方程;
(2)若曲線C1和C2交于兩點A、B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某程序框圖如圖所示,該程序運行后輸出y的值為15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.春節(jié)前,某市一過江大橋上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨立,且都在通電后的6秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以6秒內(nèi)間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過3秒的概率是( 。
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(x)=sinx+$\sqrt{3}$cosx (x∈R)
(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習冊答案