19.不解三角形,判斷下列三角形解的個(gè)數(shù).
(1)a=5,b=4,A=120°;
(2)a=7,b=14,A=150°;
(3)a=9,b=10,A=60°.

分析 根據(jù)正弦定理判斷兩邊所對(duì)角的大小關(guān)系,結(jié)合三角形的內(nèi)角和定理得出結(jié)論.

解答 解:(1)由b<a可知sinB<sinA=sin60,故B<60°,從而三角形只有一解.
(2)根據(jù)正弦定理得:$\frac{7}{sin150°}$=$\frac{14}{sinB}$,解得sinB=1,B為直角,所以此三角形無解.
(3)bsinA=5$\sqrt{3}$,∵bsinA<a<b,∴三角形有兩解.

點(diǎn)評(píng) 本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知0<x<8,則x(8-x)的最大值是(  )
A.7B.12C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若$\frac{π}{4}$<x<$\frac{π}{2}$,則函數(shù)y=tan2xtanx的取值范圍為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=sinx,x∈[-$\frac{π}{3}$,$\frac{5π}{6}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,已知2$\sqrt{3}$asinB=3b,且cosB=cosC,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,P為△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求證:
(1)平面PAB⊥平面PBC;
(2)平面AEF⊥平面PBC;
(3)平面AEF⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.甲、乙兩位同學(xué)各拿出4本書,用作投骰子的獎(jiǎng)品,兩人商定:骰子朝上的面點(diǎn)數(shù)為奇數(shù)時(shí)甲得1分,否則乙得1分,先積得3分者獲勝得所有8本書,并結(jié)束游戲.比賽開始后,甲積2分,乙積1分,這時(shí)因意外事件中斷游戲,以后也們不想再繼續(xù)這場游戲,下面對(duì)這8本書分配臺(tái)理的是( 。
A.甲得6本,乙得2本B.甲得5本,乙得3本C.甲得4本,乙得4本D.甲得7本,乙得1本

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2bcosC+c=2a.
(1)求角B的大小;
(2)若cosA=$\frac{1}{7}$,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)系正確的是( 。
A.0∉NB.0•$\overrightarrow{AB}$=0
C.cos0.75°>cos0.75D.lge>(lge)2>lg$\sqrt{e}$

查看答案和解析>>

同步練習(xí)冊(cè)答案