14.已知集合A={x|y=$\sqrt{15-2x-{x}^{2}}$},B={y|y=a-2x-x2},其中a∈R,如果A⊆B,求實(shí)數(shù)a的取值范圍.

分析 由題設(shè)條件,可先化簡集合B,再由兩個(gè)集合的包含關(guān)系得出參數(shù)的取值范圍即可.

解答 解:對于集合A:15-2x-x2≥0,∴15-2x-x2≥0,解得-5≤x≤3,
∴A={x|-5≤x≤3},
∵B={y|y=a-2x-x2},
∴y=a-2x-x2=-(x+1)2+a+1≤a+1,
∴B={y|y≤a+1},
∵A⊆B
∴a+1≥3,a≥2,
∴a的取值范圍是[2,+∞).

點(diǎn)評 本題考查集合的包含關(guān)系及應(yīng)用,解答的關(guān)鍵是化簡集合及熟練利用集合的包含關(guān)系轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若f′(x)=3,則$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}$等于(  )
A.3B.$\frac{1}{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=$\frac{{\sqrt{x+4}}}{|x|-5}$的定義域是{x|x≥-4且x≠5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(理)從P出發(fā)的三條射線PA,PB,PC每兩條夾角成60°,則二面角B-PA-C的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
A.16 cm3B.18 cm3C.20 cm3D.24 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不等式x2-logax<0對x∈(0,$\frac{1}{2}$)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.0<a<1B.$\frac{1}{16}$≤a<1C.a>1D.0<a≤$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各組函數(shù)表示同一函數(shù)的是( 。
A.f(x)=$\sqrt{x^2}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=$\root{3}{x^3}$,g(x)=xD.f(x)=x-1,g(x)=$\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0,則以下不等式中恒成立的是(  )
A.$(a+b)(\frac{1}{a}+\frac{1})≥4$B.a3+b3≥2abC.a2+b2≥2a+2bD.$\sqrt{|{a-b}|}$≤$|\sqrt{a}-\sqrt|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,正三棱柱ABC-A1B1C1的側(cè)棱長和底面邊長均為2,D是BC的中點(diǎn).
    (1)求直線A1B與C1D所成角的余弦值;
(2)求三棱錐C1-ADB1的體積.

查看答案和解析>>

同步練習(xí)冊答案