從1、2、3、4、5中任選3個,從7、8、9中任選2個,可組成無重復(fù)數(shù)字的五位數(shù)的個數(shù)為
 
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:采取先選后排的原則,即可求出結(jié)果
解答: 解:先從1、2、3、4、5中任選3個,方法有
C
3
5
=10種;
再從7,8,9中任取2個數(shù)字,方法有
C
2
3
=3種;
再把這5個數(shù)組成無重復(fù)數(shù)字的五位數(shù),方法有
A
5
5
=120種.
根據(jù)分步計數(shù)原理可得它們組成無重復(fù)數(shù)字的五位數(shù)的個數(shù)為10×3×120=3600
點評:本題主要考查排列、組合以及簡單計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,四棱錐S-ABCD的底面ABCD為直角梯形,∠ABC=90°,SA=AB=BC=1,AD=
1
2
,則平面SAB與平面SCD夾角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(Ⅰ)求異面直線EF與BC所成角的大;
(Ⅱ)若二面角A-BF-D的平面角的余弦值為
1
3
,求CF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=2(sinx+cosx)-sin2x+3在區(qū)間[-
π
4
,
π
2
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+bln(x+2),其中a,b∈R,
(Ⅰ)當(dāng)a=0時,y=f(x)在x=-1處的切線與直線y=2x+1垂直,求b的值;
(Ⅱ)當(dāng)b=-3a,且a≠0時,討論函數(shù)y=f(x)的單調(diào)性;
(Ⅲ)若a>0,對于任意b∈[-1,0],不等式f(x)≤1在[-
3
2
,0]上恒成立,求a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x,f(a+2)=18,g(x)=λf(ax)-f(2ax).
(1)若函數(shù)g(x)在區(qū)間[0,1]上是減函數(shù),求實數(shù)λ的取值范圍;
(2)對任意x∈[0,1],g(x)≤2恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:菱形ABCD對角線AC與BD相交于O.
(1)試用向量方法證明:AC⊥BD.
(2)設(shè)
AB
=
a
AD
=
b
,若E是線段OA的中點,F(xiàn)在線段AD上使AF=3FD,試用
a
b
表示
CF
,
EF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosxsin2x,下列結(jié)論中正確的為
 
(將正確的序號都填上)
①f(x)既是奇函數(shù),又是周期函數(shù);
②y=f(x)的圖象關(guān)于直線x=
π
2
對稱;
③f(x)的最大值為
4
3
9

④y=f(x)在[-
π
6
,
π
6
]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(-1,-1),B(2,3),C(3,-1),求證:△ABC是銳角三角形.

查看答案和解析>>

同步練習(xí)冊答案