6.比較大。海1)sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);(2)cos$\frac{3π}{7}$>cos$\frac{5π}{7}$.

分析 (1)由正弦函數(shù)y=sinx在(-$\frac{π}{2}$,0)單調(diào)遞增可得;
(2)由余弦函數(shù)y=cosx在(0,π)單調(diào)遞減可得.

解答 解:(1)∵正弦函數(shù)y=sinx在(-$\frac{π}{2}$,0)單調(diào)遞增,
又∵-$\frac{π}{5}$,-$\frac{2π}{5}$∈(-$\frac{π}{2}$,0)且-$\frac{π}{5}$>-$\frac{2π}{5}$,
∴sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);
(2)∵余弦函數(shù)y=cosx在(0,π)單調(diào)遞減,
又∵$\frac{3π}{7}$,$\frac{5π}{7}$∈(0,π)且$\frac{3π}{7}$<$\frac{5π}{7}$,
∴cos$\frac{3π}{7}$>cos$\frac{5π}{7}$
故答案為:>;>

點(diǎn)評 本題考查三角函數(shù)值的大小比較,涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)不等式組$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,其中a>0,若z=2x+y的最小值為$\frac{1}{2}$,則a=( 。
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+1)-kx(k∈R).
(1)若k=1,證明:當(dāng)k>0時(shí),f(x)<0;
(2)證明:當(dāng)k<1時(shí),存在x0>0,使得對任意x∈(0,x0),恒有f(x)>0;
(3)確定k的所有可能取值,使得存在t>0,對任意的x∈(0,t)恒有|f(x)|<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計(jì)算:$\underset{lim}{x-∞}$(1+$\frac{1}{2x}$)x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-2ax+1.
(1)若函數(shù)g(x)=loga[f(x)+a](a>0,a≠1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x>0時(shí),恒有不等式$\frac{f(x)}{x}$>lnx成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2-bx+1.
(1)求實(shí)數(shù)a,b使不等式f(x)<0的解集是{x|3<x<4};
(2)若a為整數(shù),b=a+2,且函數(shù)f(x)在(-2,-1)上恰有一個(gè)零點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.己知函數(shù)f(x)與它的導(dǎo)函數(shù)f'(x)滿足x2f'(x)+xf(x)=lnx,且f(e)=$\frac{1}{e}$,則下列結(jié)論正確的是(  )
A.f(x)在區(qū)間(0,+∞)上是減函數(shù)B.f(x)在區(qū)間(0,+∞)上是增函數(shù)
C.f(x)在區(qū)間(0,+∞)上先增后減D.f(x)在區(qū)間(0,+∞)上是先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在三棱錐P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足為D,求證:AD⊥面BPC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=cosx+ax2-1,a∈R.
(1)求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)a=1時(shí),求函數(shù)f(x)在[-π,π]上的最大值及最小值;
(3)若對于任意的實(shí)數(shù)x恒有f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案