分析 (1)由正弦函數(shù)y=sinx在(-$\frac{π}{2}$,0)單調(diào)遞增可得;
(2)由余弦函數(shù)y=cosx在(0,π)單調(diào)遞減可得.
解答 解:(1)∵正弦函數(shù)y=sinx在(-$\frac{π}{2}$,0)單調(diào)遞增,
又∵-$\frac{π}{5}$,-$\frac{2π}{5}$∈(-$\frac{π}{2}$,0)且-$\frac{π}{5}$>-$\frac{2π}{5}$,
∴sin(-$\frac{π}{5}$)>sin(-$\frac{2π}{5}$);
(2)∵余弦函數(shù)y=cosx在(0,π)單調(diào)遞減,
又∵$\frac{3π}{7}$,$\frac{5π}{7}$∈(0,π)且$\frac{3π}{7}$<$\frac{5π}{7}$,
∴cos$\frac{3π}{7}$>cos$\frac{5π}{7}$
故答案為:>;>
點(diǎn)評 本題考查三角函數(shù)值的大小比較,涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在區(qū)間(0,+∞)上是減函數(shù) | B. | f(x)在區(qū)間(0,+∞)上是增函數(shù) | ||
C. | f(x)在區(qū)間(0,+∞)上先增后減 | D. | f(x)在區(qū)間(0,+∞)上是先減后增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com