分析 根據(jù)$\overrightarrow{p}∥\overrightarrow{q}$即可得出$sinB=-\sqrt{3}cosB$,從而tanB=$-\sqrt{3}$,得出B=$\frac{2π}{3}$,而根據(jù)正弦定理得出:a=2RsinA,b=2RsinB,c=2RsinC,這樣帶入bcosC+ccosB=2asinA便可得到sinBcosC+sinCcosB=2sin2A,進(jìn)而得出sinA=2sin2A,這樣即可求出sinA,從而求出角A,這樣即可求出角C的大。
解答 解:∵$\overrightarrow{p}∥\overrightarrow{q}$;
∴$1•sinB-(-\sqrt{3})cosB=0$;
∴$sinB=-\sqrt{3}cosB$;
∴$tanB=-\sqrt{3}$;
∴$B=\frac{2π}{3}$;
由正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入bcosC+ccosB=2asinA整理得:
sinBcosC+sinCcosB=2sin2A;
∴sin(B+C)=sinA=2sin2A;
∴$sinA=\frac{1}{2}$;
∴$A=\frac{π}{6}$;
∴$C=\frac{π}{6}$.
故答案為:$\frac{π}{6}$.
點(diǎn)評(píng) 考查平行向量的坐標(biāo)關(guān)系,弦化切公式,已知三角函數(shù)值求角,以及兩角和的正弦公式,三角函數(shù)的誘導(dǎo)公式,正弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±x | B. | $y=±\sqrt{2}x$ | C. | $y=±\sqrt{3}x$ | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com