【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當a=3時,求曲線y=f(x)在(1,f(1))處的切線方程;
(2)設 ,且a>1,討論函數(shù)g(x)的單調(diào)性和極值點.
【答案】
(1)解:f(x)的定義域為(0,+∞).
當a=3時, ,
f'(1)=﹣1,f(1)=0.
所以曲線y=f(x)在(1,f(1))處的切線方程為x+y﹣1=0
(2)解: ,x>0,a>1,
,
令F(x)=x2+2(1﹣a)x+1,其對稱軸為x=a﹣1>0,△=4a(a﹣2)
①當△≤0,即1<a≤2,F(xiàn)(x)≥0,g'(x)≥0,
g(x)在(0,+∞)單調(diào)遞增,無極值.
②當△>0,即a>2,
令g'(x)>0,則 ,
令g'(x)<0,則
所以,增區(qū)間為
減區(qū)間為
所以,極大值點是 ,極小值點是
綜上:當1<a≤2時,f(x)在(0,+∞)單調(diào)遞增,無極值.
當a>2時,f(x)在 上單調(diào)遞增,
在 上單調(diào)遞減;
極大值點是 ,極小值點是
【解析】(1)求出函數(shù)的導數(shù),計算f(1),f′(1)的值,求出切線方程即可;(2)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點即可.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導數(shù)的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1: =1(a>b>0)與雙曲線C2:x2﹣ =1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則( )
A.a2=
B.a2=3
C.b2=
D.b2=2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,a∈R.
(1)求f(x)的解析式;
(2)解關(guān)于x的方程f(x)=(a﹣1)4x
(3)設h(x)=2﹣xf(x), 時,對任意x1 , x2∈[﹣1,1]總有 成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 首項為a1且1,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(log2a2n+1)×(log2a2n+3),求數(shù)列 的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐 中, 底面 , , .
(Ⅰ)求證:平面 平面 ;
(Ⅱ)試在棱 上確定一點 ,使截面 把該幾何體分成的兩部分 與 的體積比為 ;
(Ⅲ)在(Ⅱ)的條件下,求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解全校高中學生五一小長假參加實踐活動的情況,抽查了100名學生,統(tǒng)計他們假期參加實踐活動的時間,繪成的頻率分布直方圖如圖所示.
(1)求這100名學生中參加實踐活動時間在6~10小時內(nèi)的人數(shù);
(2)估計這100名學生參加實踐活動時間的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com