13.已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點(diǎn)處切線方程是y=5x-10
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+$\frac{1}{3}$mx,若函數(shù)g(x)存在極值,求實(shí)數(shù)m的取值范圍.

分析 (1)利用f(2)=0和f′(2)=5可得關(guān)于b,c的兩個(gè)方程,解出b,c即可.
(2)轉(zhuǎn)化為g′(x)=0有實(shí)根.根據(jù)判別式求出對(duì)應(yīng)的根,再進(jìn)行驗(yàn)證即可.

解答 解:(1)由已知,切點(diǎn)為(2,0),故有f(2)=0,
即4b+c+3=0.①
f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5.
得8b+c+7=0.②
聯(lián)立①、②,解得c=1,b=-1,
于是函數(shù)解析式為f(x)=x3-2x2+x-2.
(2)g(x)=x3-2x2+x-2+$\frac{1}{3}$mx,
g′(x)=3x2-4x+1+$\frac{m}{3}$,令g′(x)=0.
當(dāng)函數(shù)有極值時(shí),△≥0,方程3x2-4x+1+$\frac{m}{3}$=0有實(shí)根,
由△=4(1-m)≥0,得m≤1.
①當(dāng)m=1時(shí),g′(x)=0有實(shí)根x=$\frac{2}{3}$,在x=$\frac{2}{3}$左右兩側(cè)均有g(shù)′(x)>0,故函數(shù)g(x)無極值.
②當(dāng)m<1時(shí),g′(x)=0有兩個(gè)實(shí)根,
x1=$\frac{1}{3}$(2-$\sqrt{1-m}$),x2=$\frac{1}{3}$(2+$\sqrt{1-m}$),
當(dāng)x變化時(shí),g′(x)、g(x)的變化情況如下表:

x(-∞,x1x1(x1,x2x2(x2,+∞)
 g′(x)+ 0-+
 g(x)極大值 極小值 
故在m∈(-∞,1)時(shí),函數(shù)g(x)有極值.

點(diǎn)評(píng) 本題考查利用導(dǎo)函數(shù)來研究函數(shù)的極值.在利用導(dǎo)函數(shù)來研究函數(shù)的極值時(shí),分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號(hào),若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)的定義域?yàn)閇-2,2],且滿足:f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)判斷f(x)的奇偶性;
(3)若f(x)為單調(diào)函數(shù),且f(1)>0,f(-1)=-1,解不等式:f(2x)+f(x2-2)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn且滿足a1013=S2013=2013則$\frac{S_1}{a_1}$,$\frac{S_2}{a_2}$,$\frac{S_3}{a_3}$,…,$\frac{{{S_{15}}}}{{{a_{15}}}}$中最大的項(xiàng)為(  )
A.$\frac{S_6}{a_6}$B.$\frac{S_7}{a_7}$C.$\frac{S_8}{a_8}$D.$\frac{S_9}{a_9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.關(guān)于x的不等式xlnx-kx>3對(duì)任意x>1恒成立,則整數(shù)k的最大為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)M(3,-1)繞原點(diǎn)按逆時(shí)針旋轉(zhuǎn)90°后,且在矩陣A=$[{\begin{array}{l}a&0\\ 2&b\end{array}}]$對(duì)應(yīng)的變換作用下,得到點(diǎn)N (3,5),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x,則f(-$\frac{17}{2}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線l:y=$\sqrt{3}$x-4$\sqrt{3}$(k∈R)與雙曲線C:$\frac{x^2}{4}$-$\frac{y^2}{{12-{a^2}}}$=1的右支有兩個(gè)不同的交點(diǎn),則雙曲線C的離心率e的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(3,-2)則|$\overrightarrow{a}$|=( 。
A.$\sqrt{5}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$ln\frac{1+ax}{1-3x}$為奇函數(shù),則實(shí)數(shù)a的值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案