14.等比數(shù)列{an}中,a1+a2=3,a4+a5=24,則a7=128.

分析 根據(jù)題意,設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則有$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q=3}\\{{a}_{1}{q}^{3}+{a}_{1}{q}^{4}=24}\end{array}\right.$,解可得a1與q,由等比數(shù)列的通項(xiàng)公式計(jì)算可得答案.

解答 解:根據(jù)題意,設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,
則有$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q=3}\\{{a}_{1}{q}^{3}+{a}_{1}{q}^{4}=24}\end{array}\right.$,解可得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,
則a7=a1q6=1×26=128,
故答案為:128.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,一般設(shè)出等比數(shù)列的首項(xiàng)與公比,進(jìn)而解方程得到該數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,-2),則與向量$\overrightarrow$-$\overrightarrow{a}$垂直的單位向量為(  )
A.(-2,1)或(2,-1)B.(-1,2)或(1,-2)
C.(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且acosB=bcosA,a2+b2=c2+ab,則△ABC是( 。
A.鈍角三角形B.直角三角形C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合M={x|1<x+1≤3},N={x|x2-2x-3>0},則(∁RM)∩(∁RN)等于(  )
A.(-1,3)B.(-1,0)∪(2,3)C.(-1,0]∪[2,3)D.[-1,0]∪(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-4x+3lnx+m有且只有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍為($\frac{7}{2}$,$\frac{15}{2}$-3ln3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知雙曲線的漸近線方程為y=±$\sqrt{2}$x,焦點(diǎn)坐標(biāo)為(-$\sqrt{6}$,0)($\sqrt{6}$,0),則雙曲線方程為$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=1+x-sinx,則f(2),f(3),f(π)的大小關(guān)系正確的是(  )
A.f(2)>f(3)>f(π)B.f(3)>f(2)>f(π)C.f(2)>f(π)>f(3)D.f(π)>f(3)>f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在三棱柱ABC-A1B1C1中,上下兩個(gè)底面平行,側(cè)面是平行四邊形,N是AB的中點(diǎn),M是A1B1的中點(diǎn),求證:平面A1NC∥平面BMC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩定點(diǎn)F1(-3,0),F(xiàn)2(3,0),P為曲線$\frac{|x|}{5}+\frac{|y|}{4}$=1上任意一點(diǎn),則( 。
A.|PF1|+|PF2|≥10B.|PF1|+|PF2|≤10C.|PF1|+|PF2|>10D.|PF1|+|PF2|<10

查看答案和解析>>

同步練習(xí)冊(cè)答案