14.一個(gè)棱長(zhǎng)為4的正方體沿其棱的中點(diǎn)截去部分后所得幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.40B.$\frac{136}{3}$C.56D.$\frac{184}{3}$

分析 由三視圖知該幾何體是一個(gè)正方體在上底相對(duì)角截去兩個(gè)三棱錐,由條件和三視圖求出幾何元素的長(zhǎng)度,由柱體、錐體的體積公式求出幾何體的體積.

解答 解:根據(jù)題意和三視圖知幾何體是一個(gè)正方體在上底相對(duì)角截去兩個(gè)三棱錐,
畫出幾何體的直觀圖,如圖所示:
∵正方體的棱長(zhǎng)是4,且沿其棱的中點(diǎn)截去,
∴該幾何體的體積V=4×4×4-2×$\frac{1}{3}×\frac{1}{2}×2×2×2$
=$\frac{184}{3}$,
故選:D.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,則f(2014)+f(2015)+f(2016)的值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=e2x-1-2x-kx2
(Ⅰ)當(dāng)k=0時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥0時(shí),f(x)≥0恒成立,求k的取值范圍.
(Ⅲ)試比較$\frac{{{e^{2n}}-1}}{{{e^2}-1}}$與$\frac{{2{n^3}+n}}{3}$(n∈N*)的大小關(guān)系,并給出證明:(${1^2}+{2^2}+{3^2}+…+{n^2}=\frac{n(n+1)(2n+1)}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過四面體ABCD的頂點(diǎn)D作半徑為1的球,該球與四面體ABCD的外接球相切于點(diǎn)D,且與平面ABC相切,若AD=2$\sqrt{3}$,∠BAD=∠CAD=45°,∠BAC=60°,則四面體ABCD的外接球的半徑為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知三棱錐A-BCD中,AD⊥面ABC,∠BAC=120°,AB=AD=AC=2,求該棱錐的外接球半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知實(shí)數(shù)a,b,c成等比數(shù)列,函數(shù)y=(x-2)ex的極小值為b,則ac等于( 。
A.-1B.-eC.e2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.骨質(zhì)疏松癥被稱為“靜悄悄的流行病“,早期的骨質(zhì)疏松癥患者大多數(shù)無(wú)明顯的癥狀,針對(duì)中學(xué)校園的學(xué)生在運(yùn)動(dòng)中骨折事故頻發(fā)的現(xiàn)狀,教師認(rèn)為和學(xué)生喜歡喝碳酸飲料有關(guān),為了驗(yàn)證猜想,學(xué)校組織了一個(gè)由學(xué)生構(gòu)成的興趣小組,聯(lián)合醫(yī)院檢驗(yàn)科,從高一年級(jí)中按分層抽樣的方法抽取50名同學(xué) (常喝碳酸飲料的同學(xué)30,不常喝碳酸飲料的同學(xué)20),對(duì)這50名同學(xué)進(jìn)行骨質(zhì)檢測(cè),檢測(cè)情況如表:(單位:人)
有骨質(zhì)疏松癥狀無(wú)骨質(zhì)疏松癥狀總計(jì)
常喝碳酸飲料的同學(xué)22830
不常喝碳酸飲料的同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為骨質(zhì)疏松癥與喝碳酸飲料有關(guān)?
(2)現(xiàn)從常喝碳酸飲料且無(wú)骨質(zhì)疏松癥狀的8名同學(xué)中任意抽取兩人,對(duì)他們今后是否有骨質(zhì)疏松癥狀情況進(jìn)行全程跟蹤研究,記甲、乙兩同學(xué)被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.甲幾何體(上)與乙?guī)缀误w(下)的組合體的三視圖如圖所示,甲、乙?guī)缀误w的體積分別為V1、V2,則V1:V2等于1:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{πx}{m}$,函數(shù)f(x)的對(duì)稱軸為x=x0,若存在x0滿足${x}_{0}^{2}$+[f(x0)]2<m2,則m的取值范圍為( 。
A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案