14.為了得到函數(shù)y=sin2x+cos2x的圖象,可以將函數(shù)y=$\sqrt{2}$cos2x圖象(  )
A.向右平移$\frac{π}{4}$個單位B.向右平移$\frac{π}{8}$個單位
C.向左平移$\frac{π}{4}$個單位D.向左平移$\frac{π}{8}$個單位

分析 由和差角的公式化簡可得y=$\sqrt{2}$cos2(x-$\frac{π}{8}$),由三角函數(shù)圖象變換的規(guī)則可得.

解答 解:化簡可得y=sin2x+cos2x
=$\sqrt{2}$($\frac{\sqrt{2}}{2}$sin2x+$\frac{\sqrt{2}}{2}$cos2x)
=$\sqrt{2}$cos2(x-$\frac{π}{8}$)
∴只需將函數(shù)y=$\sqrt{2}$cos2x的圖象向右平移$\frac{π}{8}$個單位可得.
故選:B

點評 本題考查兩角和與差的三角函數(shù)公式,涉及三角函數(shù)圖象的變換,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點分別為A、B,半焦距為c,若點P(c,b)滿足$\overrightarrow{BA}$•$\overrightarrow{AP}$+$\overrightarrow{BP}$•$\overrightarrow{AP}$=0,則此雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在同一平面內(nèi),$\overrightarrow{a}$=(2,1).
(Ⅰ)若|$\overrightarrow{c}$|=2$\sqrt{5}$,$\overrightarrow{a}$∥$\overrightarrow{c}$,求$\overrightarrow{c}$;
(Ⅱ)若($\overrightarrow{a}$+2$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow$在$\overrightarrow{a}$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知三角形ABC三個頂點的坐標(biāo)分別為A(1,3),B(-2,-3),C(4,0).
(1)求AB邊所在直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=ax+b(b>0)的圖象經(jīng)過點P(1,2),如圖所示,則$\frac{4}{a-1}$+$\frac{1}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在定義域內(nèi)有兩個不同的極值點
(1)求a的取值范圍;
(2)記兩個極值點x1,x2,且x1<x2,已知λ>0,若不等式x1•x2λ>e1+λ恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3+ax2+bx在x=-2與x=$\frac{1}{2}$處都取得極值.
(1)求函數(shù)f(x)的解析式及單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-3,2]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平行四邊形ABCD中,A(1,1)、B(7,3)、D(4,6),點M是線段AB的中點線段CM與BD交于點P.
(1)求直線CM的方程;
(2)求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在(1+x+$\frac{1}{{x}^{2015}}$)10的展開式中,含x2項的系數(shù)為( 。
A.10B.30C.45D.120

查看答案和解析>>

同步練習(xí)冊答案