14.下列命題為真命題的是( 。
A.“x=5”是“x2-4x-5=0”的充分不必要條件
B.若p∨q為真命題,則p∧q為真命題
C.命題“x<-1,則x2-2x-3>0”的否命題為“若x<-1,則x2-2x-3≤0”
D.若命題p:?x∈R,使x2+x+1<0,則¬p:?x∈R,使x2+x+1≥0

分析 求解不等式x2-4x-5=0的解集,然后結(jié)合必要條件、充分條件及充要條件的判斷方法判斷A;由復(fù)合命題的真假判斷判定B;寫(xiě)出原命題的否命題判斷C;寫(xiě)出特稱(chēng)命題的否定判斷D.

解答 解:由x2-4x-5=0,解得:x=-1或x=5,
∴“x=5”是“x2-4x-5=0”的充分不必要條件,故A為真命題;
若p∨q為真命題,則p或q中至少有一個(gè)為真命題,當(dāng)p∧q不一定為真命題,故B錯(cuò)誤;
命題“x<-1,則x2-2x-3>0”的否命題為“若x≥-1,則x2-2x-3≤0”,故C錯(cuò)誤;
若命題p:?x∈R,使x2+x+1<0,則¬p:?x∈R,使x2+x+1≥0,故D錯(cuò)誤.
故選:A.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查必要條件、充分條件及充要條件的判斷方法,考查了命題的否定和否命題,考查復(fù)合命題的真假判斷,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足$\frac{cosB}{cosC}$+$\frac{2a}{c}+\frac{c}$=0,則角C的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\overrightarrow{a}$=(2,-6),$\overrightarrow$=(-4,3),求:
(1)|$\overrightarrow{a}$|,|$\overrightarrow$|;
(2)$\overrightarrow{a}$•$\overrightarrow$;
(3)$\overrightarrow{a}$•(2$\overrightarrow{a}$+$\overrightarrow$);
(4)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(1)化簡(jiǎn)3sinx+$\sqrt{3}$cosx;
(2)化簡(jiǎn)$\sqrt{2}$cosx-$\sqrt{6}$sinx;
(3)已知3cosx+4sinx=5cos(x+α),則sinα=-$\frac{4}{5}$;cosα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),前n項(xiàng)和為Sn,且${a_2},\frac{1}{2}{a_3},{S_2}$成等差數(shù)列,則公比q等于( 。
A.$1+\sqrt{2}$B.$1-\sqrt{2}$C.$3+2\sqrt{2}$D.$3-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.直線l1:a1x+b1y+1=0和直線l2:a2x+b2y+1=0的交點(diǎn)為(2,-1),則過(guò)兩點(diǎn)Q1(a1,b1),Q2(a2,b2)的直線方程為2x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的最小正周期為π,且圖象上有一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-3).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}$)=$\frac{9}{5}$,0<α<$\frac{π}{2}$,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等比數(shù)列{an}的首項(xiàng)a1=8,公比為q(q≠1),Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若S3,2S4,3S5成等差數(shù)列,求{an}的通項(xiàng)公式an;
(2)令bn=log2an,Tn是數(shù)列{bn}的前n項(xiàng)和,若T3是數(shù)列{Tn}中的唯一最大項(xiàng),求的q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知l,m,n為三條不同直線,α,β,γ為三個(gè)不同平面,則下列判斷正確的是( 。
A.若m∥α,n∥α,則m∥nB.若m⊥α,n∥β,α⊥β,則m⊥n
C.若α∩β=l,m∥α,m∥β,則m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,則l⊥α

查看答案和解析>>

同步練習(xí)冊(cè)答案