16.命題“設(shè)x,y∈R,若$\sqrt{x-2}$+(y+1)2=0,則x=2且y=-1”的否命題為是設(shè)x,y∈R,若$\sqrt{x-2}$+(y+1)2≠0,則x≠2或y≠-1”.

分析 根據(jù)四種命題之間的關(guān)系和定義即可得到命題的否命題.

解答 解:根據(jù)否命題的定義可知,命題的否命題為:設(shè)x,y∈R,若$\sqrt{x-2}$+(y+1)2≠0,則x≠2或y≠-1”,
故答案為:設(shè)x,y∈R,若$\sqrt{x-2}$+(y+1)2≠0,則x≠2或y≠-1”.

點評 本題主要考查四種命題之間的定義和關(guān)系,要求熟練掌握四種命題之間的關(guān)系,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{t}$是非零向量,已知:命題p:$\overrightarrow{m}$∥$\overrightarrow{t}$,$\overrightarrow{n}$∥$\overrightarrow{t}$,則$\overrightarrow{m}$∥$\overrightarrow{n}$;命題q:若$\overrightarrow{m}$•$\overrightarrow{t}$=0,$\overrightarrow{n}$•$\overrightarrow{t}$=0則$\overrightarrow{m}$•$\overrightarrow{n}$=0,則下列命題中真命題是( 。
A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{6}$),x∈[-$\frac{π}{6}$,α]的值域是[-$\frac{1}{2}$,1],則實數(shù)α的取值范圍為[$\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=cosxsin(x-$\frac{π}{6}$).當x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.將函數(shù)f(x)=sin(x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個單位后的圖象關(guān)于y軸對稱,則函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,則(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=15$\sqrt{2}$-19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.求下列各式的值:
(1)sin($\frac{π}{4}$+arcsin$\frac{1}{2}$);
(2)sin($\frac{π}{6}$-arcsin$\frac{3}{5}$);
(3)sin(2arcsin$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t為參數(shù),α為直線l的傾斜角),以原點O為極點,x軸正半軸為極軸坐標系,圓C的極坐標方程為ρ=4sin(θ+$\frac{π}{3}$),
(I)求證:直線1過定點,并求其定點M坐標;
(Ⅱ)直線l與圓C的兩個交點為A,B.當|AB|最小時,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$\left\{\begin{array}{l}2x-y≥0\\ x-y+1≤0\end{array}\right.$,則${2^{{x^2}+{y^2}}}$的最小值是32.

查看答案和解析>>

同步練習冊答案