18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(b>a>0)的兩條漸近線的夾角為60°,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\frac{4}{3}$D.$\frac{{2\sqrt{3}}}{3}$

分析 由雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(b>a>0)的兩條漸近線的夾角為60°,可得$\frac{a}$=$\sqrt{3}$,進(jìn)而可得離心率.

解答 解:∵b>a>0,∴$\frac{a}$>1.
∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(b>a>0)的兩條漸近線的夾角為60°,
∴$\frac{a}$=$\sqrt{3}$.
∴e=$\sqrt{1+3}$=2.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的性質(zhì)及其應(yīng)用,解題的關(guān)鍵是由漸近線的夾角求出$\frac{a}$=$\sqrt{3}$.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.復(fù)數(shù)$\frac{2+i}{1+i}$的實(shí)部為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知偶函數(shù)y=f(x)對(duì)于任意的x∈[0,$\frac{π}{2}$)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式中成立的有(2)(3)(4).
(1)$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)              
(2)$\sqrt{2}$f(-$\frac{π}{3}$)>f(-$\frac{π}{4}$)
(3)f(0)<$\sqrt{2}$f(-$\frac{π}{4}$)                
(4)f($\frac{π}{6}$)<$\sqrt{3}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A=x|x2-x-2<0},B={x|log4x<0.5},則( 。
A.A∩B=∅B.B⊆AC.A∩∁RB=RD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若不等式組$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥m\end{array}\right.$表示的平面區(qū)域是面積為$\frac{16}{9}$的三角形,則m的值$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.A、B、C三點(diǎn)在同一球面上,∠BAC=135°,BC=2,且球心O到平面ABC的距離為1,則此球O的體積為4$\sqrt{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.正偶數(shù)列有一個(gè)有趣的現(xiàn)象:
①2+4=6    
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
按照這樣的規(guī)律,則2016在第31 個(gè)等式中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在平面直角坐標(biāo)系xOy中,P為不等式組$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$,所表示的區(qū)域上的一個(gè)動(dòng)點(diǎn),已知點(diǎn)Q(1,-1),那么|PQ|的最大值為(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞),且f(1)≤4,則$u=\frac{a}{{{c^2}+4}}+\frac{c}{{{a^2}+4}}$的取值范圍是$\frac{1}{2}≤u≤\frac{7}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案