【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù) 的圖象在點(diǎn) 處的切線的傾斜角為 ,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù), 求的取值范圍;
(3)求證:.
【答案】(1)當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為,當(dāng)時(shí),單調(diào)增區(qū)間為,減區(qū)間為,當(dāng)時(shí),不是單調(diào)函數(shù);(2);(3)證明見解析.
【解析】
試題分析:(1)由,然后對(duì)、 和 分三種情況進(jìn)行討論;(2)由題知可得
一定有兩個(gè)不等的實(shí)根,不妨設(shè)在上遞減, 在上遞增;(3)由(1)知當(dāng)時(shí),在上遞增
.
試題解析:(1)由 ,①當(dāng)時(shí),顯然 時(shí),;當(dāng)時(shí), ,所以此時(shí)的單調(diào)增區(qū)間為減區(qū)間為; ②同理當(dāng)時(shí),的單調(diào)增區(qū)間為 , 減區(qū)間為; ③當(dāng) 時(shí), 不是單調(diào)函數(shù).
(2)由題知,得,所以,所以.因?yàn)?/span>,所以一定有兩個(gè)不等的實(shí)根,又因?yàn)?/span>.不妨設(shè) , 由已知時(shí)時(shí),即在上遞減, 在上遞增, 依題意知,于是只需得.
(3)由(1)知當(dāng)時(shí), 在上遞增, 所以 .在上式中分別令得
,以上不等式相乘得,兩邊同除以得
,即證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司在甲、乙兩地各有一個(gè)分公司,甲分公司現(xiàn)有電腦6臺(tái),乙分公司現(xiàn)有同一型號(hào)的電腦12臺(tái).現(xiàn)A地某單位向該公司購(gòu)買該型號(hào)的電腦10臺(tái),B地某單位向該公司購(gòu)買該型號(hào)的電腦8臺(tái).已知從甲地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是40元和30元,從乙地運(yùn)往A,B兩地每臺(tái)電腦的運(yùn)費(fèi)分別是80元和50元. 若總運(yùn)費(fèi)不超過1000元,則調(diào)運(yùn)方案的種數(shù)為
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升中的含藥量(微克)與時(shí)間(小時(shí))之間近似滿足如圖所示的曲線.(當(dāng)時(shí), ).
(1)寫出第一次服藥后與之間的函數(shù)關(guān)系式;
(2)據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于微克時(shí),治療疾病有效,求服藥一次后治療疾病有效時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的, 是的中點(diǎn).
()設(shè)是上的一點(diǎn),且,求的大小;
()當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)設(shè)(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com