18.在等差數(shù)列{an}中,若此數(shù)列的前10項(xiàng)和S10=36,前18項(xiàng)和S18=12,則數(shù)列{|an|}的前18項(xiàng)和T18的值是60.

分析 先判斷出a10>0,a11<0,從而T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=2S10-S18,問題得以解決.

解答 解:設(shè)公差為d,前10項(xiàng)和S10=36,前18項(xiàng)和S18=12,
∴$\left\{\begin{array}{l}{10{a}_{1}+\frac{10(10-1)d}{2}=36}\\{18{a}_{1}+\frac{18(18-1)d}{2}=12}\end{array}\right.$,
解得a1=$\frac{69}{10}$,d=-$\frac{11}{15}$,
∴an=$\frac{69}{10}$-$\frac{11}{15}$(n-1)=-$\frac{11}{15}$n+$\frac{229}{30}$,
當(dāng)an≥0時(shí),即-$\frac{11}{15}$n+$\frac{229}{30}$≥0,解得n≤$\frac{229}{22}$<11,
當(dāng)an≤0時(shí),即-$\frac{11}{15}$n+$\frac{229}{30}$≤0,解得n≥$\frac{229}{22}$>10,
∴a10>0,a11<0,
∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=2S10-S18=60.
故答案為:60.

點(diǎn)評 本題考查數(shù)列的求和問題,正確根據(jù)項(xiàng)的符號表示出T18是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=($\sqrt{3}$sinωx,1),$\overrightarrow$=(cosωx,0),其中ω>0,又函數(shù)f(x)=$\overrightarrow$•($\overrightarrow{a}$-$\overrightarrow$)+k是以$\frac{π}{2}$為最小正周期的周期函數(shù),當(dāng)x∈[0,$\frac{π}{4}$]時(shí),函數(shù)f(x)的最小值為-2
(1)求f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+2n,在等比數(shù)列{bn}中,b1+b3=5.b4+b6=40.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,若z=x+ay的最大值是2,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{\frac{1}{lgx}-2}$的定義域?yàn)椋?,$\sqrt{10}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.
(1)若a=2,b+c=2$\sqrt{2}$,求△ABC的面積S;
(2)若sinB=$\sqrt{2}$cosC,求cosC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.己知函數(shù)f(x)=ex(2x-1)-ax+a(a∈R),e為自然對數(shù)的底數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)①若存在實(shí)數(shù)x,滿足f(x)<0,求實(shí)數(shù)a的取值范圍:②若有且只有唯一整數(shù)x0,滿足f(x0)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,則該雙曲線的漸近線方程為( 。
A.y=±2xB.$y=±\frac{1}{2}x$C.$y=±\frac{1}{4}x$D.y=±4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知球O的一個(gè)內(nèi)接三棱錐P-ABC,其中△ABC是邊長為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為(  )
A.$\frac{2}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{2}$C.$\frac{4}{3}\sqrt{6}$D.$\frac{2}{3}\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案