11.已知e是自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=ex+x-2的零點(diǎn)為a,函數(shù)g(x)=lnx+x-2的零點(diǎn)為b,則a+b=( 。
A.1B.2C.3D.4

分析 根據(jù)函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為函數(shù)y=ex與y=2-x,y=lnx與y=2-x交點(diǎn)的橫坐標(biāo),利用數(shù)形結(jié)合進(jìn)行比較即可.

解答 解:由f(x)=ex+x-2=0得ex=2-x,
由g(x)=lnx+x-2=0得lnx=2-x,
作出函數(shù)y=ex,y=lnx,y=2-x的圖象如圖:
∵函數(shù)f(x)=ex+x-2的零點(diǎn)為a,函數(shù)g(x)=lnx+x-2的零點(diǎn)為b,
∴y=ex與y=2-x的交點(diǎn)的橫坐標(biāo)為a,y=lnx與y=2-x交點(diǎn)的橫坐標(biāo)為b,
y=ex,y=lnx,互為反函數(shù),圖象關(guān)于y=x對(duì)稱,
可得a+b=2.
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用函數(shù)轉(zhuǎn)化為兩個(gè)圖象的交點(diǎn)問(wèn)題,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若函數(shù)f(x)是定義域D內(nèi)的某個(gè)區(qū)間I上的增函數(shù),且h(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)是I上的“單反減函數(shù)”,已知f(x)=ex+x,g(x)=x+lnx+$\frac{2}{x}$.
(1)判斷f(x)在(0,+∞)上是否是“單反減函數(shù)”,并說(shuō)明理由;
(2)若g(x)是[$\frac{a}{4}$,+∞)上的“單反減函數(shù)”,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列不等式組中,能表示圖中陰影部分的是( 。
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若命題p:函數(shù)y=x2-2x的單調(diào)遞增區(qū)間是[1,+∞),命題q:函數(shù)y=x-$\frac{1}{x}$的單調(diào)遞增區(qū)間是[1,+∞),則( 。
A.p∧q是真命題B.p∨q是假命題C.p是真命題D.q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<$\frac{1}{2}$,則不等式f(x2)<$\frac{{x}^{2}}{2}$+$\frac{1}{2}$的解集為( 。
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,-2),$\overrightarrow{c}$=$\overrightarrow{a}$+k$\overrightarrow$,$\overrightarrowhvj8687$=$\overrightarrow{a}$-$\overrightarrow$,若$\overrightarrow{c}$⊥$\overrightarrowrx1773p$,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)tan(α+β)=$\frac{3}{7}$,tan(β-$\frac{π}{4}$)=-$\frac{1}{3}$,則tan(α+$\frac{π}{4}$)的值是( 。
A.$\frac{2}{3}$B.$\frac{8}{9}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x+$\frac{1}{x}$B.y=x3C.y=$\sqrt{x}$D.y=|x|+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.觀察下列三角形數(shù)表,假設(shè)第n行的第二個(gè)數(shù)為an(n≥2,n∈N),
(1)依次寫出第六行的所有6個(gè)數(shù)字;
(2)歸納出an+1與an的關(guān)系式,并利用遞推關(guān)系式求出an的通項(xiàng)公式(可以不證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案