14.圓(x-2)2+(y+2)2=1上的動點(diǎn)到直線3x-4y+1=0的距離的最大值為4,最小值為2.

分析 可求得圓心到直線的距離d,最大值為d+r,最小值為d-r.

解答 解:圓(x-2)2+(y+2)2=1的圓心為(2,-2)半徑為1,
圓心(2,-2)到直線3x-4y+1=0的距離d=$\frac{|3×2-4×(-2)+1|}{\sqrt{{3}^{2}+(-4)^{2}}}$=3,
∴圓上的動點(diǎn)到直線的距離的最大值為3+1=4,最小值為3-1=2,
故答案為:4;2.

點(diǎn)評 本題考查直線和圓的位置關(guān)系,涉及點(diǎn)到直線的距離公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知某回歸分析中,模型A的殘差圖的帶狀區(qū)域?qū)挾缺饶P虰的殘差圖的帶狀區(qū)域?qū)挾日瑒t在該回歸分析中擬合精度較高的模型是模型A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{a}$,$\overrightarrow$是任意的兩個(gè)向量,則下列關(guān)系式中不恒成立的是( 。
A.|$\overrightarrow{a}$|+|$\overrightarrow$|≥|$\overrightarrow{a}$-$\overrightarrow$|B.|$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$|•|$\overrightarrow$|
C.($\overrightarrow{a}$-$\overrightarrow$)2=$\overrightarrow{a}$-2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2D.($\overrightarrow{a}$-$\overrightarrow$)3=$\overrightarrow{a}$3-3$\overrightarrow{a}$2•$\overrightarrow$+3$\overrightarrow{a}$•$\overrightarrow$2-$\overrightarrow$3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知在△ABC中,角A,B,C所對的邊長分別為a,b,c且滿足b=acosC+csinA.
(1)求A的大。
(2)若cosB=$\frac{3}{5}$,BC=5,$\overrightarrow{BD}$=$\frac{1}{7}\overrightarrow{BA}$,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={x||x-2|<a},B={x|x2-2x-3<0},若B⊆A,則實(shí)數(shù)a的取值范圍是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若集合A={x|y=$\sqrt{x-1}$,x∈R},B={x||x|≤1,x∈R},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知i為虛數(shù)單位,復(fù)數(shù)z滿足(1-i)z=2i2016,則復(fù)數(shù)z的虛部為(  )
A.-1B.1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.AC是圓的直徑,B、D在圓上且AB=$\sqrt{3}$,AD=$\sqrt{5}$,則$\overrightarrow{AC}$$•\overrightarrow{BD}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=sin(2x-$\frac{π}{3}$),x∈[-$\frac{π}{2}$,π],則以下結(jié)論正確的是( 。
A.函數(shù)f(x)在[-$\frac{π}{2}$,0]上單調(diào)遞減B.函數(shù)f(x)在[0,$\frac{π}{2}$]上單調(diào)遞增
C.函數(shù)f(x)在[$\frac{π}{2}$,$\frac{5π}{6}$]上單調(diào)遞減D.函數(shù)f(x)在[$\frac{5π}{6}$,π]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案