3.AC是圓的直徑,B、D在圓上且AB=$\sqrt{3}$,AD=$\sqrt{5}$,則$\overrightarrow{AC}$$•\overrightarrow{BD}$=2.

分析 可連接CD,CB,從而得到CD⊥AD,BC⊥AB,便可得到$\overrightarrow{AC}$在$\overrightarrow{AD}$方向上的投影就是AD,所以$\overrightarrow{AC}$$•\overrightarrow{BD}$=$\overrightarrow{AC}•\overrightarrow{AD}-\overrightarrow{AC}•\overrightarrow{AB}$=$\overrightarrow{|AC}||\overrightarrow{AD}|•COS∠CAD$-$|\overrightarrow{AC}||\overrightarrow{AB}|COS∠CAB$=AD2-AB2

解答 解:如圖,連接CD,CB;
∵AC為直徑;
∴CD⊥AD,BC⊥AB;
∴$\overrightarrow{AC}$$•\overrightarrow{BD}$=$\overrightarrow{AC}•\overrightarrow{AD}-\overrightarrow{AC}•\overrightarrow{AB}$=$\overrightarrow{|AC}||\overrightarrow{AD}|•COS∠CAD$-$|\overrightarrow{AC}||\overrightarrow{AB}|COS∠CAB$=AD2-AB2=5-3=2;
故答案為:2.

點評 本題考查直徑所對的圓周角為直角,余弦函數(shù)的定義,以及向量減法的幾何意義,向量數(shù)量積的運算關(guān)鍵明確$\overrightarrow{AC}$在兩個向量方向的投影;屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為π,將其圖象向右平移$\frac{π}{3}$個單位后所得圖象對應(yīng)的解析式為(  )
A.y=sin(2x-$\frac{π}{6}$)B.y=-cos2xC.y=sin$\frac{x}{2}$D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓(x-2)2+(y+2)2=1上的動點到直線3x-4y+1=0的距離的最大值為4,最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將向量$\overrightarrow{OA}=({1,1})$繞原點O逆時針方向旋轉(zhuǎn)60°得到$\overrightarrow{OB}$,則$\overrightarrow{OB}$=( 。
A.$({\frac{{1-\sqrt{3}}}{2},\frac{{1+\sqrt{3}}}{2}})$B.$({\frac{{1+\sqrt{3}}}{2},\frac{{1-\sqrt{3}}}{2}})$C.$({\frac{{-1-\sqrt{3}}}{2},\frac{{-1+\sqrt{3}}}{2}})$D.$({\frac{{-1+\sqrt{3}}}{2},\frac{{-1-\sqrt{3}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:A${\;}_{7}^{2}$•C${\;}_{9}^{0}$+lg0.01-9${\;}^{\frac{1}{2}}$-$\frac{lo{g}_{2}3}{lo{g}_{4}9}$-cos$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品需用4個A配件耗時1h,每生產(chǎn)一件乙產(chǎn)品需用4個B配件耗時2h,該廠每天最多可從配件廠獲得24個A配件和16個B配件,每天生產(chǎn)總耗時不超過8h.若生產(chǎn)一件甲產(chǎn)品獲利3萬元,生產(chǎn)一件乙產(chǎn)品獲利4萬元,則通過恰當(dāng)?shù)纳a(chǎn)安排,該工廠每天可獲得的最大利潤為( 。
A.24萬元B.22萬元C.18萬元D.16萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等軸雙曲線過點P(-2,4),則雙曲線的標準方程為y2-x2=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則必有( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow$=0C.$\overrightarrow{a}•\overrightarrow$=0D.|$\overrightarrow{a}$|=|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.長郡中學(xué)早上8點開始上課,若學(xué)生小典與小方勻在早上7:40至8:00之間到校,且兩人在該時間段的任何時刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為( 。
A.$\frac{9}{32}$B.$\frac{1}{2}$C.$\frac{3}{64}$D.$\frac{5}{64}$

查看答案和解析>>

同步練習(xí)冊答案