分析 (1)利用韋達(dá)定理表示出sinα+cosα=$\frac{1}{5}$,sinαcosα=$\frac{m}{5}$,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系列出方程,求出方程的解即可得到m的值.
(2)當(dāng)α∈(0,π)時(shí),判斷角的范圍,利用(1)的結(jié)果求出tanα,然后利用誘導(dǎo)公式求cot(3π-α)的值即可.
(3)利用(1)的結(jié)果化簡(jiǎn)求解即可.
解答 解:(1)∵sinα和cosα是方程5x2-x+m=0的兩實(shí)根,
∴sinα+cosα=$\frac{1}{5}$,sinαcosα=$\frac{m}{5}$,
∵(sinα+cosα)2=sin2α+cos2α+2sinαcosα=1+2sinαcosα,
∴$\frac{1}{25}$=1+$\frac{2m}{5}$,
解得:m=-$\frac{12}{5}$.
(2)sinα+cosα=$\frac{1}{5}$,sinαcosα=-$\frac{12}{25}$;α是鈍角,可得:$\frac{tanα}{{tan}^{2}α+1}=-\frac{12}{25}$,解得tanα=$-\frac{3}{4}$或-$\frac{4}{3}$.
當(dāng)α∈(0,π)時(shí),cot(3π-α)=-cotα=$\frac{3}{4}$或$\frac{4}{3}$.
(3)sinα+cosα=$\frac{1}{5}$,sinαcosα=-$\frac{12}{25}$;
sin4α+cos4α=1-2(sinαcosα)2=$\frac{227}{625}$.
點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 135° | B. | 120° | C. | 90° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com