分析 作出不等式組對應(yīng)的平面區(qū)域,根據(jù)直線平移即可求出目標(biāo)函數(shù)的最小值.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖
由z=4x-y得y=4x-z,
平移直線y=4x-z,由圖象知,當(dāng)直線y=4x-z經(jīng)過A時,直線的截距最大,此時z最小,
經(jīng)過點B時,直線的截距最小,此時z最大,
由$\left\{\begin{array}{l}{x=1}\\{x-2y+5=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),此時z最小值為z=4-3=1,
故答案為:1
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合求出目標(biāo)函數(shù)的最優(yōu)解,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,e) | B. | (0,e2) | C. | (0,$\frac{1}{e}$) | D. | (0,$\frac{1}{{e}^{2}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 2-$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>1} | B. | {x|x≥1} | C. | {x|x≤0或x>1} | D. | {x|0≤x≤1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com