1.已知a,b∈R,i是虛數(shù)單位,若a+i與2-bi互為共軛復數(shù),則(a+bi)2=( 。
A.3-4iB.3+4iC.5-4iD.5+4i

分析 直接由a+i與2-bi互為共軛復數(shù),求出a、b的值,然后代入(a+bi)2,再由復數(shù)代數(shù)形式的乘法運算化簡,則答案可求.

解答 解:∵a+i與2-bi互為共軛復數(shù),
∴a=2,b=1.
則(a+bi)2=(2+i)2=3+4i.
故選:B.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的求法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=x2+mx+n,對任意的t,都有f(1+t)=f(1-t),那么f(1),f(-2),f(4)的大小關(guān)系為:f(4)=f(-2)>f(1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$).
(1)求f(x)的最小正周期和f($\frac{π}{8}$)的值;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{x}{2x-1}$+f′(1),則f′(1)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)f(x)=x+$\frac{(2a+1)x+1}{x}$+1為奇函數(shù),則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合X={x∈Z|x2-x-6≤0},Y={y|y=1-x2,x∈R},則X∩Y=( 。
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1,0,1}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知兩集合$A=\left\{{x\left|{{x^2}+x-2≤0}\right.}\right\},B=\left\{{x\left|{\frac{2x-1}{x}>0}\right.}\right\}$,則A∩B=( 。
A.[-2,0)B.$({\frac{1}{2},1}]$C.$[{-2,0})∪({\frac{1}{2},1}]$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=ax+2-1(a>0且a≠1)的圖象恒過得點是( 。
A.(0,0)B.(0,-1)C.(-2,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知f(x)=2xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)≤g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案