分析 (1)由a,b,c>0,可得a+$\frac{{c}^{2}}{a}$≥2c,b+$\frac{{a}^{2}}$≥2a,c+$\frac{^{2}}{c}$≥2b,相加即可得證;
(2)a>0,b>0,a+b=1,可得a+b≥2$\sqrt{ab}$,求得$\frac{1}{ab}$≥4,即可得證.
解答 證明:(1)由a,b,c>0,可得:
a+$\frac{{c}^{2}}{a}$≥2c,b+$\frac{{a}^{2}}$≥2a,c+$\frac{^{2}}{c}$≥2b,
相加可得(a+b+c)+($\frac{{a}^{2}}+\frac{^{2}}{c}+\frac{{c}^{2}}{a}$)≥2(a+b+c),
即有$\frac{{a}^{2}}+\frac{^{2}}{c}+\frac{{c}^{2}}{a}$≥a+b+c,
當(dāng)且僅當(dāng)a=b=c取得等號;
(2)a>0,b>0,a+b=1,
可得a+b≥2$\sqrt{ab}$,即有0<ab≤$\frac{1}{4}$,
即為$\frac{1}{ab}$≥4,
即有$\frac{1}{a}$+$\frac{1}$+$\frac{1}{ab}$=$\frac{2}{ab}$≥8,
當(dāng)且僅當(dāng)a=b=$\frac{1}{2}$時,取得等號.
點評 本題考查不等式的證明,注意運用基本不等式和不等式的性質(zhì),考查運算和推理能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{3}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{3}$,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{b^2}{a^2}$ | B. | -$\frac{b^2}{a^2}$ | ||
C. | -$\frac{c^2}{a^2}$ | D. | 不確定,隨A,B的變化而變化 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com