【題目】過(guò)直線上的點(diǎn)作橢圓的切線,切點(diǎn)分別為,聯(lián)結(jié)

(1)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),證明直線恒過(guò)定點(diǎn);

(2)當(dāng)時(shí),定點(diǎn)平分線段

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

設(shè).則橢圓過(guò)點(diǎn)的切線方程分別為.因?yàn)閮汕芯都過(guò)點(diǎn),所以,

這表明點(diǎn)均在直線

上.由兩點(diǎn)決定一條直線知,式①就是直線的方程,其中滿足直線的方程.

(1)當(dāng)在直線上運(yùn)動(dòng)時(shí),可理解為取遍一切實(shí)數(shù),相應(yīng)的.代

入式①消去

對(duì)一切恒成立.

變形可得對(duì)一切恒成立.

由此得直線恒過(guò)定點(diǎn)

(2)當(dāng)時(shí),由式②知.解得

代入式②得的方程為

將此方程與橢圓方程聯(lián)立,消去

由此得截橢圓所得弦的中點(diǎn)橫坐標(biāo)恰好為點(diǎn)的橫坐標(biāo),即

代入式③可得弦中點(diǎn)縱坐標(biāo)恰好為點(diǎn)的縱坐標(biāo),即

這就是說(shuō),點(diǎn)平分線段

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)橢圓的右焦點(diǎn)F作兩條相互垂直的直線分別交橢圓于A,B,C,D四點(diǎn),則的值為( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦.曼德?tīng)柌剂_在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖(1)所示的分形規(guī)律可得如圖(2)所示的一個(gè)樹(shù)形圖.若記圖(2)中第行黑圈的個(gè)數(shù)為,則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限和所支出的維修費(fèi)(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):

(年)

2

3

4

5

6

(萬(wàn)元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道對(duì)呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)20行若干列的0,1數(shù)陣滿足各列互不相同且任意兩列中同一行都取1的行數(shù)不超過(guò)2.求當(dāng)列數(shù)最多時(shí),數(shù)陣中1的個(gè)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知過(guò)點(diǎn)的圓和直線相切,且圓心在直線.

1)求圓的標(biāo)準(zhǔn)方程;

2)點(diǎn),圓上是否存在點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2) |的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,⊥平面,的中點(diǎn).

(Ⅰ)證明:∥平面

(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的展開(kāi)式中,的系數(shù)是( )

A. -160 B. -120 C. 40 D. 200

查看答案和解析>>

同步練習(xí)冊(cè)答案