分析 分別確定命題p,q對應(yīng)的范圍P={x|-2≤x≤10}和Q={x|1-m≤x≤1+m,m>0},再將問題等價(jià)為p是q的充分不必要條件,進(jìn)而得出P?Q,最后解不等式即可.
解答 解:對于命題p:由|1-$\frac{x-1}{3}$|≤2,解得,-2≤x≤10,
記集合P={x|-2≤x≤10},
對于命題q:由x2-2x+(1-m)(1+m)≤0(m>0),
得[x-(1-m)][x-(1+m)]≤0,解得,1-m≤x≤1+m,
記集合Q={x|1-m≤x≤1+m,m>0},
因?yàn),¬p是¬q的必要不充分條件,
所以,q是P的必要不充分條件,故p是q的充分不必要條件,
因此,P?Q,所以,$\left\{\begin{array}{l}{1-m≤-2}\\{1+m≥10}\end{array}\right.$,解得,m≥9.
故實(shí)數(shù)m的取值范圍為:[9,+∞).
點(diǎn)評 本題主要考查了條件之間充要關(guān)系的判斷,以及條件間的充要關(guān)系與集合之間的包含關(guān)系的關(guān)聯(lián),涉及一元二次不等式的解法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 充要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | b<c<a | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0 | B. | a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$ | ||
C. | (a3)2=a9 | D. | a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在x0>0,使得x0<sinx0 | |
B. | “l(fā)na>lnb”是“10a>10b”的充要條件 | |
C. | 若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$ | |
D. | 若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com