分析 根據題意,畫出圖形,結合圖形得出從A點沿表面到D1的路程是多少,求出即可.
解答 解:將所給的正六棱柱按圖1部分展開,
則AD′1=$\sqrt{{4}^{2}{+(\sqrt{3})}^{2}}$=$\sqrt{19}$,
AD1=$\sqrt{{1}^{2}{+(3\sqrt{3})}^{2}}$=$\sqrt{28}$,
∵AD′1<AD1,
∴從A點沿正側面和上底面到D1的路程最短,為$\sqrt{19}$.
故答案為:$\sqrt{19}$.
點評 本題考查了幾何體的展開圖,以及兩點之間線段最短的應用問題,立體幾何兩點間的最短距離時,通常把立體圖形展開成平面圖形,轉化成平面圖形兩點間的距離問題來求解,是基礎題目.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{5}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com