A. | Sn+1an>Snan+1 | B. | Sn+1an<Snan+1 | C. | Sn+1an≥Snan+1 | D. | Sn+1an≤Snan+1 |
分析 對q分類討論,利用求和公式作差即可得出.
解答 解:當(dāng)q=1時,Sn+1an=(n+1)${a}_{1}^{2}$,Snan+1=$n{a}_{1}^{2}$
Sn+1an-Snan+1=${a}_{1}^{2}$>0.
當(dāng)q>0且q≠1時,Sn+1an-Snan+1=$\frac{{a}_{1}(1-{q}^{n+1})•{a}_{1}{q}^{n-1}}{1-q}$-$\frac{{a}_{1}(1-{q}^{n})•{a}_{1}{q}^{n}}{1-q}$=$\frac{{a}_{1}^{2}{q}^{n-1}(1-q)}{1-q}$=${a}_{1}^{2}{q}^{n-1}$>0.
∴Sn+1an>Snan+1.
綜上可得:Sn+1an>Snan+1.
故選:A.
點評 本題考查了等比數(shù)列的通項公式與求和公式、作差法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
X | 3 | 4 | 5 | 6 |
y | 2.5 | m | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {0,1,2} | C. | {-2,1,2} | D. | {-2,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y(x)=x•ex | B. | $y=\frac{sinx}{x}$ | C. | $y=\frac{x}{sinx}$ | D. | $y=\frac{lnx}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $-\frac{3}{5}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com