分析 由條件利用函數(shù)的單調(diào)性可得f(α)<-f(β),f( β)<-f(γ ),f(γ)<-f(α ),再利用函數(shù)的奇偶性可得f(α)+f(β)+f(γ)<0.
解答 解:由奇函數(shù)f(x)在區(qū)間(-∞,+∞)上是單調(diào)遞減函數(shù),α,β,γ∈R且α+β>0,β+γ>0,γ+α>0,
可得α>-β,β>-γ,γ>-α,
∴f(α)<f(-β),f( β)<f(-γ ),f(γ)<f(-α ),
即 f(α)<-f(β),f( β)<-f(γ ),f(γ)<-f(α ),
相加可得f(α)+f(β)+f(γ)<-[f(α)+f(β)+f(γ)],
可得f(α)+f(β)+f(γ)<0.
點(diǎn)評 本題主要考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4] | B. | [2,4] | C. | [2,4) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,$\frac{1}{2}$] | B. | [-1,2] | C. | [$\frac{1}{2}$,2] | D. | [-1,$\frac{1}{2}$]∪[2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com