分析 (1)依題意可知G是AC中點(diǎn),而F是EC中點(diǎn),根據(jù)中位線定理可知FG∥AE,又FG?平面BFD,AE?平面BFD,滿足線面平行的判定定理的三個(gè)條件,從而得證.
(2)根據(jù)AD⊥平面ABE,AD∥BC可得BC⊥平面ABE,根據(jù)線面垂直的性質(zhì)可知AE⊥BC,根據(jù)BF⊥平面ACE,則AE⊥BF,而BC∩BF=B,滿足線面垂直的判定定理,從而證得結(jié)論.
解答 證明:(1)依題意可知:G是AC中點(diǎn)(2分)
∴F是EC中點(diǎn)(5分)
在△AEC中,F(xiàn)G∥AE
又FG?平面BFD,AE?平面BFD
∴AE∥平面BFD(7分)
(2)∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,而AE?平面ABE則AE⊥BC(9分)
又∵BF⊥平面ACE,而AE?面ACE,則AE⊥BF,BC∩BF=B
∴AE⊥平面BCE(12分)
點(diǎn)評(píng) 本題主要考查了線面垂直的判定,以及線面平行的判定和線面垂直的性質(zhì),同時(shí)考查了推理論證的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $-\frac{1}{3}$ | D. | $-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com