8.如圖,四邊形ABCD為矩形,AD⊥平面ABE,F(xiàn)為CE上中點(diǎn),且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求證:AE⊥平面BCE.

分析 (1)依題意可知G是AC中點(diǎn),而F是EC中點(diǎn),根據(jù)中位線定理可知FG∥AE,又FG?平面BFD,AE?平面BFD,滿足線面平行的判定定理的三個(gè)條件,從而得證.
(2)根據(jù)AD⊥平面ABE,AD∥BC可得BC⊥平面ABE,根據(jù)線面垂直的性質(zhì)可知AE⊥BC,根據(jù)BF⊥平面ACE,則AE⊥BF,而BC∩BF=B,滿足線面垂直的判定定理,從而證得結(jié)論.

解答 證明:(1)依題意可知:G是AC中點(diǎn)(2分)
∴F是EC中點(diǎn)(5分)
在△AEC中,F(xiàn)G∥AE
又FG?平面BFD,AE?平面BFD
∴AE∥平面BFD(7分)
(2)∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,而AE?平面ABE則AE⊥BC(9分)
又∵BF⊥平面ACE,而AE?面ACE,則AE⊥BF,BC∩BF=B
∴AE⊥平面BCE(12分)

點(diǎn)評(píng) 本題主要考查了線面垂直的判定,以及線面平行的判定和線面垂直的性質(zhì),同時(shí)考查了推理論證的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sin(2x-$\frac{3π}{4}$),x∈R.
(1)指出f(x)的周期、振幅、相位;
(2)求函數(shù)f(x)的最大值,并求y取得最大值時(shí)自變量x的集合;
(3)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四凌錐P-ABCD而底面ABCD是矩形,側(cè)面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.
(Ⅰ)求證:PA⊥PC;
(Ⅱ)在AD=2,AB=4,求三棱錐P-ABD的體積;
(Ⅲ)在條件(Ⅱ)下,求四棱錐P-ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線ax-by-2=0與曲線y=x3在點(diǎn)P(1,1)處的切線互相垂直,則$\frac{a}$的值( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$-\frac{1}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.己知函數(shù)f(x)=aex+x2,g(x)=sinx+bx,直線l與曲線C1:y=f(x)切于點(diǎn)(0,f(0))且與
曲線C2:y=g(x)切于點(diǎn)($\frac{π}{2}$,g($\frac{π}{2}$)).
(I)求a,b的值和直線l的方程.
(Ⅱ)證明:除切點(diǎn)外,曲線C1,C2位于直線l的兩側(cè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b,c是正整數(shù),關(guān)于x的一元二次方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根的絕對(duì)值均小于$\frac{1}{3}$,求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,將邊長為1的正方形ABCD,沿對(duì)角線BD折起來,使平面ABD⊥平面C′BD,則AC′=( 。
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)集合P={x|x=a+b$\sqrt{3}$,a、b∈N},對(duì)于其中任意兩個(gè)元素進(jìn)行加法、減法、除法(除數(shù)不能為零)的運(yùn)算,其結(jié)果是否仍屬于集合P,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.tan$\frac{π}{8}$-$\frac{1}{tan\frac{π}{8}}$的值是(  )
A.-1B.-2C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案