設(shè)兩數(shù)列{an}、{bn}分別滿足an+1=an+2n,bn+1=bn+2(n∈N*),且a1=b1=2.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(I)由an+1=an+2n,可得an+1-an=2n.利用“累加求和”即可得出.
由bn+1=bn+2(n∈N*),b1=2.利用等差數(shù)列的通項(xiàng)公式即可得出.
(II)由(I)可知:anbn=2n•2n=n•2n+1.利用等比數(shù)列的前n項(xiàng)和公式、“錯(cuò)位相減法”即可得出.
解答: 解:(I)由an+1=an+2n,可得an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+2
=
2n-1
2-1
+1=2n
當(dāng)n=1時(shí),上式也成立.
由bn+1=bn+2(n∈N*),b1=2.
∴bn=b1+(n-1)d=2+2(n-1)=2n.
(II)由(I)可知:anbn=2n•2n=n•2n+1
∴Sn=1×22+2×23+…+(n-1)•2n+n•2n+1,
2Sn=23+2×24+…+(n-1)•2n+1+n•2n+2,
兩式錯(cuò)位相減可得:-Sn=22+23+…+2n+1-n•2n+2=
4(2n-1)
2-1
-n•2n+2
=(1-n)•2n+2-4.
∴Sn=(n-1)•2n+2+4.
點(diǎn)評(píng):本題考查了“累加求和”、等差數(shù)列的通項(xiàng)公式、等比數(shù)列的前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{An}滿足An+1=An2,則稱數(shù)列{An}為“平方遞推數(shù)列”.已知數(shù)列{an}中,a1=2,點(diǎn)(an,an+1)在函數(shù)f(x)=2x2+2x的圖象上,其中n∈N*
(1)證明:數(shù)列{2an+1}是“平方遞推數(shù)列”,且數(shù)列{lg(2an+1)}為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前n項(xiàng)之積為Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求數(shù)列{an}的通項(xiàng)公式及Tn;
(3)記bn=log (2an+1)Tn,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn>2013的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-x2-3,g(x)=
a
x
+xlnx,其中a∈R.
(1)若存在x1,x2∈[0,2],使得f(x1)-f(x2)≥M,求整數(shù)M的最大值;
(2)若對(duì)任意的s,t∈[
1
2
,2],都有f(t)≤g(s),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
x
lnx
(a<0).
(Ⅰ)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最大值;
(Ⅱ)若存在x1,x2∈[
e
,e2],使f(x1)≤f′(x2)-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2+b在點(diǎn)(1,1)處的切線方程為y=x+3.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a2=5,a4=9,數(shù)列{bn}正項(xiàng)的等比數(shù)列,Sn是其前n項(xiàng)和,且S2=
3
2
,S4=
15
8
,數(shù)列{cn},通項(xiàng)cn=an•bn,則求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+mx2(m∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和為Sn,a1=1,Sn=n(an+1)-n2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若
3
S1S2
+
5
S2S3
+…+
2n+1
SnSn+1
=
624
625
,n∈N+,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y-1=0與圓(x-1)2+(y-2)2=R2(R>0)相切,則R的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案