【題目】下列說法不正確的是(

A.為真為真的充分不必要條件;

B.若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;

C.在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件發(fā)生的概率為

D.設(shè)從總體中抽取的樣本為若記樣本橫、縱坐標(biāo)的平均數(shù)分別為,則回歸直線必過點(diǎn)

【答案】C

【解析】

A.為真”可知為真命題,可得“為真”,反之不成立,即可判斷出正誤;B. 根據(jù)平均數(shù)公式即可判斷;.由題意得的范圍,再利用幾何概率計(jì)算公式即可判斷出正誤;.根據(jù)回歸直線的性質(zhì)即可判斷.

.為真”可知,為真命題,可得“為真”反之“為真”可知真或真,但不一定為真,為真為真的充分不必要條件,故正確;

.由題意知,則,故正確;

.在區(qū)間上隨機(jī)取一個(gè)數(shù),由

,解得

事件發(fā)生的概率為: ,故不正確;

.根據(jù)回歸直線的性質(zhì)可知,回歸直線必過中心點(diǎn),故正確.

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求證:上存在唯一零點(diǎn);

(2)求證:有且僅有兩個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時(shí),求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cy=D為直線y=上的動(dòng)點(diǎn),過DC的兩條切線,切點(diǎn)分別為AB.

1)證明:直線AB過定點(diǎn):

2)若以E(0,)為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E的焦點(diǎn)為F,過F的直線lE交于AB兩點(diǎn),與x軸交于點(diǎn).A為線段的中點(diǎn),則

A.9B.12C.18D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點(diǎn)FC的一個(gè)頂點(diǎn).

)求橢圓C的方程;

)設(shè)PE上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M

i)求證:點(diǎn)M在定直線上;

ii)直線y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的一個(gè)焦點(diǎn)為,四條直線,所圍成的區(qū)域面積為.

1)求的方程;

2)設(shè)過的直線交于不同的兩點(diǎn),設(shè)弦的中點(diǎn)為,且為原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線與函數(shù)的圖象在處的切線互相平行.

1)求的值;

2)若恒成立,求實(shí)數(shù)的取值范圍;

3)若數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E)的焦點(diǎn)為F,圓C:,點(diǎn)為拋物線上一動(dòng)點(diǎn).當(dāng)時(shí),的面積為.

1)求拋物線E的方程;

2)若,過點(diǎn)P作圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案