【題目】已知函數(shù)的圖象在處的切線與函數(shù)的圖象在處的切線互相平行.
(1)求的值;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)若數(shù)列的前項和為,求證:.
【答案】(1);(2);(3)見詳解
【解析】
(1)根據(jù)曲線在某點處的導(dǎo)數(shù)的幾何意義,可得與函數(shù)的圖象在處的導(dǎo)數(shù),由于切線平行,可得結(jié)果
(2)利用分離參數(shù)的方法,得到,然后構(gòu)建函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)的值域與的大小關(guān)系,可得結(jié)果.
(3)根據(jù)(2),得到,然后令代入,兩邊取對數(shù),進(jìn)行化簡,結(jié)合不等式可得,最后求和可得結(jié)果.
(1)由,所以,
則,又
所以,據(jù)題意可知:
(2)由(1)可知
又對恒成立,
即在恒成立,
令,
當(dāng)時,
當(dāng)時,
所以在單調(diào)遞減,
在單調(diào)遞增,
所以
所以
所以實數(shù)的取值范圍為
(3)由(2)可知:
當(dāng)時,,即
令,所以,兩邊取對數(shù),
可得,
所以
即
所以
即
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)記,試判斷函數(shù)的極值點的情況;
(Ⅱ)若有且僅有兩個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.“為真”是“為真”的充分不必要條件;
B.若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;
C.在區(qū)間上隨機取一個數(shù),則事件“”發(fā)生的概率為
D.設(shè)從總體中抽取的樣本為若記樣本橫、縱坐標(biāo)的平均數(shù)分別為,則回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)求函數(shù)的定義域(用區(qū)間表示);
(2)討論函數(shù)在上的單調(diào)性;
(3)若,求上滿足條件的的集合(用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市房管局為了了解該市市民年月至年月期間買二手房情況,首先隨機抽樣其中名購房者,并對其購房面積(單位:平方米,)進(jìn)行了一次調(diào)查統(tǒng)計,制成了如圖所示的頻率分布直方圖,接著調(diào)查了該市年月至年月期間當(dāng)月在售二手房均價(單位:萬元/平方米),制成了如圖所示的散點圖(圖中月份代碼分別對應(yīng)年月至年月).
(1)試估計該市市民的購房面積的中位數(shù);
(2)現(xiàn)采用分層抽樣的方法從購房面積位于的位市民中隨機抽取人,再從這人中隨機抽取人,求這人的購房面積恰好有一人在的概率;
(3)根據(jù)散點圖選擇和兩個模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為和,并得到一些統(tǒng)計量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預(yù)測出年月份的二手房購房均價(精確到)
(參考數(shù)據(jù)),,,,,,
(參考公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的計數(shù)系統(tǒng),“滿幾進(jìn)一”就是幾進(jìn)制,不同進(jìn)制之間可以相互轉(zhuǎn)化,例如把十進(jìn)制的89轉(zhuǎn)化為二進(jìn)制,根據(jù)二進(jìn)制數(shù)“滿二進(jìn)一”的原則,可以用2連續(xù)去除89得商,然后取余數(shù),具體計算方法如下:
把以上各步所得余數(shù)從下到上排列,得到89=1011001(2)這種算法叫做“除二取余法”,上述方法也可以推廣為把十進(jìn)制數(shù)化為k進(jìn)制數(shù)的方法,稱為“除k取余法”,那么用“除k取余法”把89化為七進(jìn)制數(shù)為_.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,判斷在定義域上的單調(diào)性;
(2)若對定義域上的任意的,有恒成立,求實數(shù)a的取值范圍;
(3)證明:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求實數(shù),的值;
(2)若,且在區(qū)間上恒成立,求實數(shù)的取值范圍;
(3)若,且,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為且滿足,當(dāng)時,.
(1)判斷在上的單調(diào)性并加以證明;
(2)若方程有實數(shù)根,則稱為函數(shù)的一個不動點,設(shè)正數(shù)為函數(shù)的一個不動點,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com